forked from microsoft/CNTK
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBackCompat.cpp
696 lines (621 loc) · 41.7 KB
/
BackCompat.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
//
// Copyright (c) Microsoft. All rights reserved.
// Licensed under the MIT license. See LICENSE.md file in the project root for full license information.
//
#include "stdafx.h"
#include "CNTKLibrary.h"
#include "BackCompat.h"
#include "PrimitiveFunction.h"
#include "CompositeFunction.h"
#include "ComputationNetworkBuilder.h"
#include "Utils.h"
#include "ComputationNode.h"
#include "InputAndParamNodes.h"
#include "NonlinearityNodes.h"
#include "LinearAlgebraNodes.h"
#include "RecurrentNodes.h"
#include "EvaluationNodes.h"
#include "TrainingNodes.h"
#include "ReshapingNodes.h"
#include "DeprecatedNodes.h"
#include "RNNNodes.h"
#include "PreComputeNodes.h"
#include "DeprecatedNodes.h"
#include "SpecialPurposeNodes.h"
#include "SequenceReshapeNodes.h"
using namespace Microsoft::MSR::CNTK;
namespace CNTK
{
namespace Internal
{
// Helper class to resolve variables in the model.
class VariableResolver final
{
std::unordered_map<Variable, Variable> m_placeholderReplacements;
std::unordered_map<ComputationNodeBasePtr, Variable> m_nodeToVariableMap;
std::unordered_set<FunctionPtr> m_allPrimitiveFunctions;
public:
const std::unordered_map<Variable, Variable>& GetPlaceHolders() const
{
return m_placeholderReplacements;
}
template<class ElementType>
Variable GetVariable(const ComputationNodeBasePtr& node)
{
auto iter = m_nodeToVariableMap.find(node);
if (iter != m_nodeToVariableMap.end())
return iter->second;
Variable var;
if (node->IsLeaf())
var = ResolveLeaf<ElementType>(node);
else
{
// This is a non-leaf node and maps to a primitive Function
NDShape varShape = AsNDShape(node->GetSampleLayout());
auto placeholderVar = PlaceholderVariable(varShape);
m_nodeToVariableMap[node] = placeholderVar;
std::vector<Variable> inputVars(node->GetNumInputs());
for (size_t i = 0; i < inputVars.size(); ++i)
{
inputVars[i] = GetVariable<ElementType>(node->Input(i));
if (inputVars[i].IsPlaceholder())
m_placeholderReplacements[inputVars[i]] = Variable();
}
var = ResolveFunction<ElementType>(node, inputVars);
if (m_placeholderReplacements.find(placeholderVar) != m_placeholderReplacements.end())
m_placeholderReplacements[placeholderVar] = var;
}
m_nodeToVariableMap[node] = var;
return var;
}
private:
template<class ElementType>
Variable CreateParameterOrConstantFromNodeValue(const ComputationNodeBasePtr& node, bool isConstant)
{
auto& matrix = node->As<ComputationNode<ElementType>>()->Value();
auto tensorView = new TensorView<ElementType>(std::make_shared<Matrix<ElementType>>(matrix.AsReference()), AsTensorViewShape(node->GetSampleLayout()));
NDArrayViewPtr value = MakeSharedObject<NDArrayView>(AsDataType<ElementType>(), AsDeviceDescriptor(matrix.GetDeviceId()), AsStorageFormat(matrix.GetFormat()), AsNDShape(node->GetSampleLayout()), false, tensorView);
auto kind = isConstant ? VariableKind::Constant : VariableKind::Parameter;
std::wstring varUid, varName;
std::tie(varUid, varName) = UidAndNameFromCNTKInternalNodeName(node->NodeName(), kind);
return isConstant ? (Variable)Constant(value, varName, varUid) : Parameter(value, varName, varUid);
}
template<class ElementType>
Variable ResolveLeaf(const ComputationNodeBasePtr& node)
{
NDShape variableShape = AsNDShape(node->GetSampleLayout());
std::wstring varUid, varName;
if (node->Is<InputValueBase<ElementType>>())
{
std::tie(varUid, varName) = UidAndNameFromCNTKInternalNodeName(node->NodeName(), VariableKind::Input);
bool isSparse = node->Is<SparseInputValue<ElementType>>();
if (node->HasMBLayout())
{
// TODO: Currently only default dynamic axis is supported
auto inputNodeInternalDynamicAxisName = node->As<InputValueBase<ElementType>>()->GetRequestedDynamicAxis();
std::vector<Axis> inputVarDynamicAxes = DynamicAxesFromInternalDynamicAxisName(inputNodeInternalDynamicAxisName);
return Variable(variableShape, isSparse, AsDataType<ElementType>(), node->GetLearningRateMultiplier() != 0, varName, inputVarDynamicAxes, varUid);
}
// TODO: Allow creating inputs without a dynamic axis
LogicError("LoadLegacyModel: Found InputNode '%S' with no dynamic axes which is currently unsupported.", node->NodeName().c_str());
}
if (node->Is<LearnableParameter<ElementType>>())
{
bool isConstant = (node->GetLearningRateMultiplier() == 0);
return CreateParameterOrConstantFromNodeValue<ElementType>(node, isConstant);
}
LogicError("LoadLegacyModel: Unsupported legacy CNTK node named '%S'.", node->NodeName().c_str());
return Variable();// make compiler happy.
}
template<class ElementType>
Variable ResolveFunction(const ComputationNodeBasePtr& node, std::vector<Variable>& inputVars)
{
PrimitiveOpType opType;
Dictionary primitiveFunctionConfigParameters;
if (node->OperationName() == OperationNameOf(NegateNode))
opType = PrimitiveOpType::Negate;
else if (node->OperationName() == OperationNameOf(SigmoidNode))
opType = PrimitiveOpType::Sigmoid;
else if (node->OperationName() == OperationNameOf(StableSigmoidNode))
opType = PrimitiveOpType::StableSigmoid;
else if (node->OperationName() == OperationNameOf(TanhNode))
opType = PrimitiveOpType::Tanh;
else if (node->OperationName() == OperationNameOf(CosineNode))
opType = PrimitiveOpType::Cos;
else if (node->OperationName() == OperationNameOf(SinNode))
opType = PrimitiveOpType::Sin;
else if (node->OperationName() == OperationNameOf(PassNode))
opType = PrimitiveOpType::Pass;
else if (node->OperationName() == OperationNameOf(LabelsToGraphNode))
opType = PrimitiveOpType::LabelsToGraph;
else if (node->OperationName() == OperationNameOf(RectifiedLinearNode))
opType = PrimitiveOpType::ReLU;
else if (node->OperationName() == OperationNameOf(ExpNode))
opType = PrimitiveOpType::Exp;
else if (node->OperationName() == OperationNameOf(LogNode))
opType = PrimitiveOpType::Log;
else if (node->OperationName() == OperationNameOf(SqrtNode))
opType = PrimitiveOpType::Sqrt;
else if (node->OperationName() == OperationNameOf(FloorNode))
opType = PrimitiveOpType::Floor;
else if (node->OperationName() == OperationNameOf(AbsNode))
opType = PrimitiveOpType::Abs;
else if (node->OperationName() == OperationNameOf(ReciprocalNode))
opType = PrimitiveOpType::Reciprocal;
else if (node->OperationName() == OperationNameOf(SoftmaxNode))
opType = PrimitiveOpType::Softmax;
else if (node->OperationName() == OperationNameOf(HardmaxNode))
opType = PrimitiveOpType::Hardmax;
else if (node->OperationName() == OperationNameOf(TransposeDimensionsNode))
{
auto transposeDimensionsNode = node->As<TransposeDimensionsNode<ElementType>>();
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameAxis1] = AsAxis(transposeDimensionsNode->Axis1());
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameAxis2] = AsAxis(transposeDimensionsNode->Axis2());
opType = PrimitiveOpType::TransposeAxes;
}
else if (node->OperationName() == OperationNameOf(WhereNode))
{
auto internalDynamicAxisName = node->As<WhereNode<ElementType>>()->DynamicAxisName();
std::vector<Axis> dynamicAxes = DynamicAxesFromInternalDynamicAxisName(internalDynamicAxisName);
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameNewDynamicAxes] = AsDictionaryValueVector(dynamicAxes);
opType = PrimitiveOpType::Where;
}
else if (node->OperationName() == OperationNameOf(SliceNode))
{
auto sliceNode = node->As<SliceNode<ElementType>>();
auto axis = sliceNode->Axis();
auto beginIndex = sliceNode->BeginIndex();
auto endIndex = sliceNode->EndIndex();
assert(axis.size() > 0 && axis.size() == beginIndex.size() && axis.size() == endIndex.size());
if (axis.size() == 1)
{
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameAxis] = AsAxis(axis[0]);
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameBeginIndex] = beginIndex[0];
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameEndIndex] = endIndex[0];
}
else
{
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameAxisVec] = AsDictionaryValueVector(AsAxis(axis));
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameBeginIndexVec] = AsDictionaryValueVector(beginIndex);
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameEndIndexVec] = AsDictionaryValueVector(endIndex);
}
opType = PrimitiveOpType::Slice;
}
else if (node->OperationName() == OperationNameOf(RandomSampleNode))
{
auto randomSampleNode = node->As<RandomSampleNode<ElementType>>();
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameAllowDuplicates] = randomSampleNode->GetAllowDuplicates();
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameNumSamples] = randomSampleNode->GetNumSamples();
opType = PrimitiveOpType::RandomSample;
}
else if (node->OperationName() == OperationNameOf(RandomSampleInclusionFrequencyNode))
{
auto randomSampleInclusionFrequencyNode = node->As<RandomSampleInclusionFrequencyNode<ElementType>>();
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameAllowDuplicates] = randomSampleInclusionFrequencyNode->GetAllowDuplicates();
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameNumSamples] = randomSampleInclusionFrequencyNode->GetNumSamples();
opType = PrimitiveOpType::RandomSampleInclusionFrequency;
}
else if (node->OperationName() == OperationNameOf(DropoutNode))
{
auto dropoutNode = node->As<DropoutNode<ElementType>>();
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameDropoutRate] = dropoutNode->GetDropoutRate();
opType = PrimitiveOpType::Dropout;
}
else if (node->OperationName() == OperationNameOf(ReshapeNode))
{
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameNewShape] = AsNDShape(node->GetSampleLayout());
opType = PrimitiveOpType::Reshape;
}
else if (node->OperationName() == OperationNameOf(SumElementsNode))
opType = PrimitiveOpType::SumAll;
else if (node->OperationName() == OperationNameOf(PlusNode))
opType = PrimitiveOpType::Plus;
else if (node->OperationName() == OperationNameOf(LogPlusNode))
opType = PrimitiveOpType::LogPlus;
else if (node->OperationName() == OperationNameOf(MinusNode))
opType = PrimitiveOpType::Minus;
else if (node->OperationName() == OperationNameOf(ElementTimesNode))
opType = PrimitiveOpType::ElementTimes;
else if (node->OperationName() == OperationNameOf(EqualNode))
opType = PrimitiveOpType::Equal;
else if (node->OperationName() == OperationNameOf(NotEqualNode))
opType = PrimitiveOpType::NotEqual;
else if (node->OperationName() == OperationNameOf(LessNode))
opType = PrimitiveOpType::Less;
else if (node->OperationName() == OperationNameOf(LessEqualNode))
opType = PrimitiveOpType::LessEqual;
else if (node->OperationName() == OperationNameOf(GreaterNode))
opType = PrimitiveOpType::Greater;
else if (node->OperationName() == OperationNameOf(GreaterEqualNode))
opType = PrimitiveOpType::GreaterEqual;
else if (node->OperationName() == OperationNameOf(PackedIndexNode))
opType = PrimitiveOpType::PackedIndex;
else if (node->OperationName() == OperationNameOf(GatherPackedNode))
opType = PrimitiveOpType::GatherPacked;
else if (node->OperationName() == OperationNameOf(ScatterPackedNode))
opType = PrimitiveOpType::ScatterPacked;
else if (node->OperationName() == OperationNameOf(TimesNode))
{
// Deal with abuse of * in legacy configs/models
if (inputVars[0].Shape().Rank() == 0 || inputVars[1].Shape().Rank() == 0)
opType = PrimitiveOpType::ElementTimes;
else
{
auto timesNode = node->As<TimesNode<ElementType>>();
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameOutputRank] = timesNode->OutputRank();
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameInferInputRankToMap] = timesNode->InferInputRankToMap();
opType = PrimitiveOpType::Times;
}
}
else if (node->OperationName() == OperationNameOf(TransposeTimesNode))
{
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameOutputRank] = node->As<TransposeTimesNode<ElementType>>()->OutputRank();
opType = PrimitiveOpType::TransposeTimes;
}
else if (node->OperationName() == OperationNameOf(PastValueNode))
{
if (inputVars.size() == 1)
{
auto initialStateVar = Constant::Scalar(node->As<PastValueNode<ElementType>>()->InitialActivationValue(), AsDeviceDescriptor(node->GetDeviceId()));
inputVars.push_back(initialStateVar);
}
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameOffset] = (size_t)node->As<PastValueNode<ElementType>>()->TimeStep();
opType = PrimitiveOpType::PastValue;
}
else if (node->OperationName() == OperationNameOf(FutureValueNode))
{
if (inputVars.size() == 1)
{
auto initialStateVar = Constant::Scalar(node->As<FutureValueNode<ElementType>>()->InitialActivationValue(), AsDeviceDescriptor(node->GetDeviceId()));
inputVars.push_back(initialStateVar);
}
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameOffset] = (size_t)node->As<FutureValueNode<ElementType>>()->TimeStep();
opType = PrimitiveOpType::FutureValue;
}
else if (node->OperationName() == OperationNameOf(CosDistanceNode))
opType = PrimitiveOpType::CosDistance;
else if (node->OperationName() == OperationNameOf(LogisticNode))
opType = PrimitiveOpType::Logistic;
else if (node->OperationName() == OperationNameOf(SquareErrorNode))
opType = PrimitiveOpType::SquaredError;
else if (node->OperationName() == OperationNameOf(CrossEntropyWithSoftmaxNode))
opType = PrimitiveOpType::CrossEntropyWithSoftmax;
else if (node->OperationName() == OperationNameOf(ClassificationErrorNode))
opType = PrimitiveOpType::ClassificationError;
else if (node->OperationName() == OperationNameOf(LambdaRankNode))
opType = PrimitiveOpType::LambdaRank;
else if (node->OperationName() == OperationNameOf(NDCG1EvalNode))
opType = PrimitiveOpType::NDCG;
else if (node->OperationName() == OperationNameOf(ReduceElementsNode))
{
auto reduceElementsNode = node->As<ReduceElementsNode<ElementType>>();
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameAxis] = AsAxis(reduceElementsNode->ReductionAxis());
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameReductionOpName] = reduceElementsNode->ReductionOpName();
opType = PrimitiveOpType::ReduceElements;
}
else if (node->OperationName() == OperationNameOf(SumColumnElementsNode))
{
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameAxis] = Axis(0);
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameReductionOpName] = PrimitiveFunction::InternalSumReductionOpName;
opType = PrimitiveOpType::ReduceElements;
}
else if (node->OperationName() == OperationNameOf(ConvolutionNode))
{
auto convolutionNode = node->As<ConvolutionNode<ElementType>>();
// Some legacy CNTK v1 models store the convolution filter parameters in 2D form with the trailing
// tensor dimensions flattended into the column dimension of the 2D paramater matrix
// We need to recover the actual tensor shape of the parameter in this case
auto& convolutionMapVar = inputVars[0];
if (convolutionNode->IsConvolution2D() || (convolutionMapVar.Shape().Rank() == 2))
{
assert(convolutionMapVar.Shape().Rank() == 2);
assert(convolutionMapVar.IsConstant() || convolutionMapVar.IsParameter());
auto kernelShape = AsNDShape(convolutionNode->KernelShape());
NDShape actualConvolutionMapShape = kernelShape.AppendShape({ convolutionMapVar.Shape()[0] });
if (actualConvolutionMapShape.TotalSize() != convolutionMapVar.Shape().TotalSize())
LogicError("The convolution map tensor's shape '%S' size does not match the size (%d) of the legacy 2D convolution map shape '%S'.",
actualConvolutionMapShape.AsString().c_str(), (int)convolutionMapVar.Shape().TotalSize(), convolutionMapVar.Shape().AsString().c_str());
auto oldConvolutionMapValue = convolutionMapVar.IsConstant() ? Constant(convolutionMapVar).Value() : Parameter(convolutionMapVar).Value();
auto oldConvolutionMapMatrix = oldConvolutionMapValue->GetMatrix<ElementType>();
auto tensorView = new TensorView<ElementType>(std::make_shared<Matrix<ElementType>>(oldConvolutionMapMatrix->AsReference()), AsTensorViewShape(actualConvolutionMapShape));
auto newConvolutionMapValue = MakeSharedObject<NDArrayView>(oldConvolutionMapValue->GetDataType(), oldConvolutionMapValue->Device(), oldConvolutionMapValue->GetStorageFormat(), actualConvolutionMapShape, oldConvolutionMapValue->IsReadOnly(), tensorView);
// Lets replace the convolutionMapVar with a new properly reshaped Parameter/Constant
convolutionMapVar = convolutionMapVar.IsConstant() ? Variable(Constant(newConvolutionMapValue, convolutionMapVar.Name(), convolutionMapVar.Uid())) : Variable(Parameter(newConvolutionMapValue, convolutionMapVar.Name(), convolutionMapVar.Uid()));
}
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameStrides] = AsNDShape(convolutionNode->Strides());
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameSharing] = AsDictionaryValueVector(convolutionNode->Sharing());
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameAutoPadding] = AsDictionaryValueVector(convolutionNode->AutoPad());
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameLowerPad] = AsNDShape(convolutionNode->LowerPad());
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameUpperPad] = AsNDShape(convolutionNode->UpperPad());
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameTranspose] = convolutionNode->Transpose();
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameOutputShape] = AsNDShape(convolutionNode->OutputShape());
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameMaxTempMemSizeInSamples] = convolutionNode->MaxTempMemSizeInSamples();
opType = PrimitiveOpType::Convolution;
}
else if (node->OperationName() == OperationNameOf(ROIPoolingNode))
{
auto roiPoolingNode = node->As<ROIPoolingNode<ElementType>>();
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameROIOutputShape] = AsNDShape(roiPoolingNode->ROIOutputShape());
opType = PrimitiveOpType::ROIPooling;
}
else if (node->OperationName() == OperationNameOf(MaxUnpoolingNode))
{
auto unpoolingNode = node->As<MaxUnpoolingNode<ElementType>>();
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNamePoolingType] = (size_t)PoolingType::Max;
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameUnpoolingWindowShape] = AsNDShape(unpoolingNode->KernelShape());
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameStrides] = AsNDShape(unpoolingNode->Strides());
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameAutoPadding] = AsDictionaryValueVector(unpoolingNode->AutoPad());
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameLowerPad] = AsNDShape(unpoolingNode->LowerPad());
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameUpperPad] = AsNDShape(unpoolingNode->UpperPad());
opType = PrimitiveOpType::Unpooling;
}
else if (node->OperationName() == OperationNameOf(PoolingNode))
{
auto poolingNode = node->As<PoolingNode<ElementType>>();
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNamePoolingType] = (size_t)(AsPoolingType(poolingNode->PoolingKind()));
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNamePoolingWindowShape] = AsNDShape(poolingNode->KernelShape());
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameStrides] = AsNDShape(poolingNode->Strides());
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameAutoPadding] = AsDictionaryValueVector(poolingNode->AutoPad());
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameLowerPad] = AsNDShape(poolingNode->LowerPad());
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameUpperPad] = AsNDShape(poolingNode->UpperPad());
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameCeilOutDim] = poolingNode->CeilOutDim();
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameIncludePad] = poolingNode->PoolIncludePad();
opType = PrimitiveOpType::Pooling;
}
// Legacy pooling node.
else if ((node->OperationName() == OperationNameOf(MaxPoolingNode)) ||
(node->OperationName() == OperationNameOf(AveragePoolingNode)))
{
auto poolingNode = node->As<PoolingNodeBase<ElementType>>();
if (poolingNode->IsImageLayoutCHW())
{
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNamePoolingType] = (size_t)(AsPoolingType(poolingNode->PoolingKind()));
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNamePoolingWindowShape] = AsNDShape(poolingNode->KernelShape());
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameStrides] = AsNDShape(poolingNode->Strides());
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameAutoPadding] = AsDictionaryValueVector(poolingNode->AutoPad());
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameLowerPad] = AsNDShape(poolingNode->LowerPad());
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameUpperPad] = AsNDShape(poolingNode->UpperPad());
opType = PrimitiveOpType::Pooling;
}
else
LogicError("Unsupported data layout for ComputationNode with OperationName='%S' found when loading legacy CNTK model", node->OperationName().c_str());
}
else if (node->OperationName() == OperationNameOf(BatchNormalizationNode))
{
auto batchNormalizationNode = node->As<BatchNormalizationNode<ElementType>>();
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameSpatial] = batchNormalizationNode->Spatial();
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameNormalizationTimeConstant] = batchNormalizationNode->NormalizationTimeConstant();
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameBlendTimeConstant] = batchNormalizationNode->BlendTimeConstant();
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameEpsilon] = batchNormalizationNode->Epsilon();
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameUseCuDNNEngine] = !batchNormalizationNode->UseCNTKEngine();
opType = PrimitiveOpType::BatchNormalization;
}
else if (node->OperationName() == OperationNameOf(ClipNode))
opType = PrimitiveOpType::Clip;
else if (node->OperationName() == OperationNameOf(IfNode))
opType = PrimitiveOpType::Select;
else if (node->OperationName() == OperationNameOf(RowStackNode))
{
// Internal CNTK SliceNode uses 1 based axis indices instead of 0 based
auto rowStackNode = node->As<RowStackNode<ElementType>>();
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameAxis] = AsAxis(rowStackNode->GetSpliceDim());
opType = PrimitiveOpType::Splice;
}
else if (node->OperationName() == OperationNameOf(OptimizedRNNStackNode))
{
auto optimizedRNNStackNode = node->As<OptimizedRNNStackNode<ElementType>>();
auto attributes = optimizedRNNStackNode->Attributes();
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameBidirectional] = attributes.m_bidirectional;
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameHiddenSize] = attributes.m_hiddenSize;
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameNumLayers] = attributes.m_numLayers;
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameRecurrentOp] = attributes.m_recurrentOp;
opType = PrimitiveOpType::OptimizedRNNStack;
}
else if (node->OperationName() == OperationNameOf(ReconcileDynamicAxisNode))
{
opType = PrimitiveOpType::ReconcileDynamicAxis;
}
else if (node->OperationName() == OperationNameOf(LogSoftmaxNode))
{
opType = PrimitiveOpType::LogSoftmax;
}
else if (node->OperationName() == OperationNameOf(EditDistanceErrorNode))
{
auto edNode = node->As<EditDistanceErrorNode<ElementType>>();
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameInsertionPenalty] = edNode->InsertionPenalty();
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameDeletionPenalty] = edNode->DeletionPenalty();
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameSubstitutionPenalty] = edNode->SubstitutionPenalty();
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameSquashInputs] = edNode->SquashInputs();
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameTokensToIgnore] = AsDictionaryValueVector(edNode->TokensToIgnore());
opType = PrimitiveOpType::EditDistanceError;
}
else if (node->OperationName() == OperationNameOf(ForwardBackwardNode))
{
auto edNode = node->As<ForwardBackwardNode<ElementType>>();
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameDelayConstraint] = edNode->DelayConstraint();
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameBlankTokenId] = edNode->BlankTokenId();
opType = PrimitiveOpType::ForwardBackward;
}
else if (node->OperationName() == OperationNameOf(CosDistanceWithNegativeSamplesNode))
{
opType = PrimitiveOpType::CosDistanceWithNegativeSamples;
}
else if ((node->OperationName() == OperationNameOf(MeanNode)) || (node->OperationName() == OperationNameOf(InvStdDevNode)))
{
auto precomputeNode = node->As<MeanInvStdDevNodeBase<ElementType>>();
if (!precomputeNode->HasComputed())
InvalidArgument("Cannot load a CNTK legacy V1 model containing a Mean/InvStdDev node '%S' which is not precomputed.", node->NodeName().c_str());
return CreateParameterOrConstantFromNodeValue<ElementType>(node, /* isConstant =*/ true);
}
else if (node->OperationName() == OperationNameOf(PerDimMeanVarNormalizationNode))
{
auto meanValue = Constant(inputVars[1]).Value();
auto invStdDevValue = Constant(inputVars[2]).Value();
std::wstring uid, name;
std::tie(uid, name) = UidAndNameFromCNTKInternalNodeName(node->NodeName());
return PerDimMeanVarianceNormalize(inputVars[0], meanValue, invStdDevValue, name);
}
else
InvalidArgument("Unsupported ComputationNode with OperationName='%S' found when loading legacy CNTK model.\n"
"This is likely a deprecated operation; loading Brainscript/NDL models that contain deprecated operations, is not supported in Python/C++ API.\n"
"Please refer to CNTK documentation and edit/modify your Brainscript model/script to replace the deprecated operation with a supported operation.\n" , node->OperationName().c_str());
if (node->Is<RngUser>())
{
auto rngUserNode = node->As<RngUser>();
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameRngSeed] = static_cast<size_t>(rngUserNode->GetRngSeed());
primitiveFunctionConfigParameters[PrimitiveFunction::AttributeNameRngOffset] = static_cast<size_t>(rngUserNode->GetRngOffset());
}
// Let's reorder inputVars properly since the ordering of inputs of CNTK internal ComputationNode may be different from the PrimitiveFunction inputs ordering
ReorderAsPrimitiveFunctionInputs(opType, inputVars);
std::wstring functionUid, functionName;
std::tie(functionUid, functionName) = UidAndNameFromCNTKInternalNodeName(node->NodeName(), opType);
FunctionPtr primitiveFunction = MakeSharedObject<PrimitiveFunction>(opType, inputVars, std::move(primitiveFunctionConfigParameters), functionName, functionUid);
m_allPrimitiveFunctions.insert(primitiveFunction);
return primitiveFunction->Output();
}
};
static const char legacyMarker[] = { 0x42, 0x00, 0x43, 0x00, 0x4e, 0x00, 0x00, 0x00 }; // L"BCN"
bool IsLegacyModel(std::fstream& stream)
{
static const auto markerSize = sizeof(legacyMarker);
char buffer[markerSize];
const auto position = stream.tellg();
stream.read(buffer, markerSize);
stream.seekg(position);
return IsLegacyModel(buffer, markerSize);
}
bool IsLegacyModel(const char *buffer, size_t bufferSize)
{
static const auto markerSize = sizeof(legacyMarker);
if (bufferSize < markerSize)
return false;
return (strncmp(legacyMarker, buffer, markerSize) == 0);
}
FunctionPtr LoadLegacyModel(const std::wstring& modelFile, const DeviceDescriptor& computeDevice /*= DeviceDescriptor::UseDefaultDevice()*/)
{
ComputationNetworkPtr net = make_shared<ComputationNetwork>(AsCNTKImplDeviceId(computeDevice));
net->SetTraceLevel(Internal::GetComputationNetworkTraceLevel());
net->SetTrackGapNans(GetCheckedMode());
auto dataType = DetectLegacyModelDataType(modelFile);
switch (dataType)
{
case LegacyModelDataType::Auto:
net->Load<float>(modelFile); // the actual template type will be ignored.
break;
case LegacyModelDataType::Float:
net->Load<float>(modelFile);
break;
case LegacyModelDataType::Double:
net->Load<double>(modelFile);
break;
default:
NOT_IMPLEMENTED;
}
return ConvertFromLegacyModel(net);
}
FunctionPtr ConvertFromLegacyModel(const ComputationNetworkPtr& net)
{
// Traverse the model and construct the Function graph
std::unordered_map<ComputationNodeBasePtr, Variable> nodeToVariableMap;
std::unordered_map<Variable, Variable> placeholderReplacements;
std::vector<Variable> rootVariables;
VariableResolver resolver;
auto& networkRoots = net->RootNodes();
for (auto& rootNode : networkRoots)
{
if (rootNode->IsLeaf())
continue;
if (ComputationNetwork::IsNodePtr<ComputationNode<float>>(rootNode))
{
auto var = resolver.GetVariable<float>(rootNode);
rootVariables.push_back(var.IsOutput() ? (Variable)var.Owner() : var);
}
else if (ComputationNetwork::IsNodePtr<ComputationNode<double>>(rootNode))
{
auto var = resolver.GetVariable<double>(rootNode);
rootVariables.push_back(var.IsOutput() ? (Variable)var.Owner() : var);
}
else
LogicError("ConvertFromLegacyModel(): computation node '%S' has invalid element type.", rootNode->NodeName().c_str());
}
auto rootComposite = Combine(rootVariables);
rootComposite->ReplacePlaceholders(resolver.GetPlaceHolders());
return rootComposite;
}
void SaveAsLegacyModel(const FunctionPtr& rootFunction, const std::wstring& modelFile)
{
CompositeFunction* compositeFunction = dynamic_cast<CompositeFunction*>(rootFunction.get());
if (compositeFunction == nullptr)
InvalidArgument("Primitive (i.e. non-composite) Function '%S' instance cannot be saved.", rootFunction->AsString().c_str());
auto networkInputs = compositeFunction->Inputs();
for (const auto& input : networkInputs)
{
if (input.Shape().HasUnboundDimension())
InvalidArgument("Function '%S': Cannot save as legacy format, a model having inputs with free or inferred static axes.", compositeFunction->AsString().c_str());
}
compositeFunction->UpdateInternalState();
DeviceDescriptor device = DeviceDescriptor::CPUDevice();
if (compositeFunction->m_computationNetwork == nullptr)
{
auto parameters = compositeFunction->Parameters();
if (!parameters.empty())
device = parameters.front().Value()->Device();
}
else
device = AsDeviceDescriptor(compositeFunction->m_computationNetwork->GetDeviceId());
// We create a fresh computation network for the compositeFunction for the save since we want the underlying
// computation network to have mangled names for the ComputationNodes such that when the V1 model is deserialized,
// we get back the original Uid and Names for the variables in the V2 Function graph.
ComputationNetworkPtr computationNetwork;
std::unordered_map<Variable, ComputationNodeBasePtr> dummyVariableToNodeMap;
DataType dataType = rootFunction->Outputs()[0].GetDataType();
switch (dataType)
{
case DataType::Float:
std::tie(computationNetwork, dummyVariableToNodeMap) = CompositeFunction::CreateComputationNetwork<float>(rootFunction, device, {}, {}, {}, /*useMangledNamesForComputationNodes =*/ true);
break;
case DataType::Double:
std::tie(computationNetwork, dummyVariableToNodeMap) = CompositeFunction::CreateComputationNetwork<double>(rootFunction, device, {}, {}, {}, /*useMangledNamesForComputationNodes =*/ true);
break;
default:
LogicError("SaveAsLegacyModel: Function '%S' has unknown DataType %s.", rootFunction->AsString().c_str(), DataTypeName(dataType));
}
computationNetwork->Save(modelFile);
}
LegacyModelDataType DetectLegacyModelDataType(const std::wstring& modelFile)
{
File fstream(modelFile, FileOptions::fileOptionsBinary | FileOptions::fileOptionsRead);
fstream.GetMarker(FileMarker::fileMarkerBeginSection, L"BCN");
// model version
size_t modelVersion = CNTK_MODEL_VERSION_1; // if version info is not there it is version 1
if (fstream.TryGetMarker(FileMarker::fileMarkerBeginSection, L"BVersion"))
{
fstream >> modelVersion;
fstream.GetMarker(FileMarker::fileMarkerEndSection, L"EVersion");
}
if (modelVersion > CNTK_MODEL_VERSION_7)
{
return LegacyModelDataType::Auto;
}
char b = 0x42;
std::wstring bmat = L"BMAT";
for (;;)
{
fstream.SkipToDelimiter(b); // skip to the next 'B' character.
ungetc(b, fstream); // but the character back into the stream.
if (fstream.TryGetMarker(fileMarkerBeginSection, bmat))
{
size_t elementSize;
fstream >> elementSize;
if (elementSize == sizeof(float))
return LegacyModelDataType::Float;
else if (elementSize == sizeof(double))
return LegacyModelDataType::Double;
else
RuntimeError("DetectLegacyModelDataType(): invalid element size %zu.", elementSize);
}
fgetc(fstream); // consume 'B' character to avoid an infinite cycle.
}
}
}
}