forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsft_trainer.py
158 lines (141 loc) · 6.42 KB
/
sft_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from typing import Dict, Optional
import numpy as np
import paddle
import paddle.distributed as dist
from paddle.distributed import fleet
from paddle.io import BatchSampler, DataLoader, DistributedBatchSampler
from paddlenlp.trainer import Trainer
from paddlenlp.trainer.trainer_utils import has_length
from paddlenlp.utils.log import logger
__all__ = ["SFTTrainer"]
class SFTTrainer(Trainer):
def __init__(self, do_generation: bool, gen_args, data_args, **kwargs):
super().__init__(**kwargs)
self.do_generation = do_generation
self.gen_args = gen_args
self.data_args = data_args
def prediction_step(
self,
model,
inputs,
prediction_loss_only: bool,
ignore_keys=None,
):
if prediction_loss_only or self.args.pipeline_parallel_degree > 1:
return super().prediction_step(model, inputs, prediction_loss_only, ignore_keys)
elif not self.do_generation:
loss, logits, labels = super().prediction_step(model, inputs, prediction_loss_only, ignore_keys)
# argmax here to avoid gather all logits, which is too memory-consuming.
# keepdim in order to maintain the same shape as logits
if isinstance(logits, (list, tuple)):
logits = logits[0]
# all gather logits when enabling tensor_parallel_output
if self.args.tensor_parallel_degree > 1 and getattr(self.args, "tensor_parallel_output", False):
hcg = fleet.get_hybrid_communicate_group()
model_parallel_group = hcg.get_model_parallel_group()
gathered_logits = []
dist.all_gather(gathered_logits, logits, group=model_parallel_group)
logits = paddle.concat(gathered_logits, axis=-1)
return (loss, logits.argmax(axis=-1, keepdim=True), labels)
loss = None
model.eval()
with paddle.no_grad():
generated_tokens = model.generate(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"] if "attention_mask" in inputs else None,
position_ids=inputs["position_ids"] if "position_ids" in inputs else None,
max_length=max(self.data_args.max_length - inputs["input_ids"].shape[-1], 1),
decode_strategy="sampling",
top_k=self.gen_args.top_k,
top_p=self.gen_args.top_p,
bos_token_id=self.tokenizer.bos_token_id,
eos_token_id=self.tokenizer.eos_token_id,
pad_token_id=self.tokenizer.pad_token_id,
use_cache=True,
)[0]
all_preds = []
for pred_tokens in generated_tokens:
pred_tokens = pred_tokens.numpy()
pred_tokens = pred_tokens[pred_tokens != self.tokenizer.pad_token_id].tolist()
all_preds.append(pred_tokens)
max_pred_length = max([len(x) for x in all_preds])
for index, preds in enumerate(all_preds):
all_preds[index] = preds + [-100] * (max_pred_length - len(preds))
all_preds = paddle.to_tensor(all_preds)
if "labels" in inputs:
all_labels = paddle.to_tensor(inputs["labels"])
else:
all_labels = None
return (loss, all_preds, all_labels)
def log(self, logs: Dict[str, float], **kwargs) -> None:
if "loss" in logs:
logs["ppl"] = np.exp(logs["loss"])
if "eval_loss" in logs:
logs["eval_ppl"] = np.exp(logs["eval_loss"])
super(SFTTrainer, self).log(logs, **kwargs)
def get_ptq_dataloader(self, ptq_ds):
if self.args.world_size <= 1:
ptq_sampler = BatchSampler(
dataset=ptq_ds,
shuffle=True,
batch_size=self.args.per_device_train_batch_size,
drop_last=self.args.dataloader_drop_last,
)
else:
ptq_sampler = DistributedBatchSampler(
self.train_dataset,
batch_size=self.args.per_device_train_batch_size,
shuffle=True,
num_replicas=self.args.dataset_world_size,
rank=self.args.dataset_rank,
drop_last=self.args.dataloader_drop_last,
)
ptq_dataloader = DataLoader(
ptq_ds,
batch_sampler=ptq_sampler,
collate_fn=self.data_collator,
num_workers=self.args.dataloader_num_workers,
)
return ptq_dataloader
def ptq_loop(
self,
dataloader: DataLoader,
description: str,
max_eval_iters: Optional[int] = -1,
):
if isinstance(dataloader, paddle.io.DataLoader):
batch_size = dataloader.batch_sampler.batch_size
else:
raise ValueError("Only support for paddle.io.DataLoader")
if has_length(dataloader):
logger.info(f" Num examples = {self.num_examples(dataloader)}")
if max_eval_iters > 0:
logger.info(f" Total {description} steps = {max_eval_iters}")
else:
logger.info(f" Total {description} steps = {len(dataloader)}")
else:
logger.info(" Num examples: Unknown")
if max_eval_iters > 0:
logger.info(f" Total {description} steps = {max_eval_iters}")
logger.info(f" Pre device batch size = {batch_size}")
logger.info(f" Total Batch size = {batch_size * self.args.dataset_world_size}")
self.model.eval()
with paddle.no_grad():
for step, inputs in enumerate(dataloader):
self.prediction_step(model=self.model, inputs=inputs, prediction_loss_only=True, ignore_keys=None)
if max_eval_iters > 0 and step >= max_eval_iters - 1:
break