forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_utils.py
468 lines (413 loc) · 20.1 KB
/
model_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import inspect
import io
import json
import os
from shutil import copyfile
import numpy as np
import paddle
from paddle.framework import core
from paddlenlp.transformers import PretrainedModel
from paddlenlp.utils.download import resolve_file_path
# TODO(fangzeyang) Temporary fix and replace by paddle framework downloader later
from paddlenlp.utils.log import logger
__all__ = ["FasterPretrainedModel", "ActScalesLoader", "WeightScalesLoader", "PerTensorWeightScalesLoader"]
def load_vocabulary(filepath):
token_to_idx = {}
with io.open(filepath, "r", encoding="utf-8") as f:
for index, line in enumerate(f):
token = line.rstrip("\n")
token_to_idx[token] = int(index)
return token_to_idx
class FasterPretrainedModel(PretrainedModel):
def to_static(self, output_path):
self.eval()
# Convert to static graph with specific input description
model = paddle.jit.to_static(
self, input_spec=[paddle.static.InputSpec(shape=[None, None], dtype=core.VarDesc.VarType.STRINGS)]
)
paddle.jit.save(model, output_path)
logger.info("Already save the static model to the path %s" % output_path)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *args, **kwargs):
"""
Creates an instance of `PretrainedModel`. Model weights are loaded
by specifying name of a built-in pretrained model, or a community contributed model,
or a local file directory path.
Args:
pretrained_model_name_or_path (str): Name of pretrained model or dir path
to load from. The string can be:
- Name of a built-in pretrained model
- Name of a community-contributed pretrained model.
- Local directory path which contains model weights file("model_state.pdparams")
and model config file ("model_config.json").
*args (tuple): Position arguments for model `__init__`. If provided,
use these as position argument values for model initialization.
**kwargs (dict): Keyword arguments for model `__init__`. If provided,
use these to update pre-defined keyword argument values for model
initialization. If the keyword is in `__init__` argument names of
base model, update argument values of the base model; else update
argument values of derived model.
Returns:
PretrainedModel: An instance of `PretrainedModel`.
Example:
.. code-block::
from paddlenlp.transformers import BertForSequenceClassification
# Name of built-in pretrained model
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
# Name of community-contributed pretrained model
model = BertForSequenceClassification.from_pretrained('yingyibiao/bert-base-uncased-sst-2-finetuned')
# Load from local directory path
model = BertForSequenceClassification.from_pretrained('./my_bert/')
"""
pretrained_models = list(cls.pretrained_init_configuration.keys())
resource_files = {}
init_configuration = {}
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
cache_dir = kwargs.pop("cache_dir", None)
from_hf_hub = kwargs.pop("from_hf_hub", False)
from_aistudio = kwargs.pop("from_aistudio", False)
subfolder = kwargs.pop("subfolder", "")
# From built-in pretrained models
if pretrained_model_name_or_path in pretrained_models:
for file_id, map_list in cls.pretrained_resource_files_map.items():
resource_files[file_id] = map_list[pretrained_model_name_or_path]
init_configuration = copy.deepcopy(cls.pretrained_init_configuration[pretrained_model_name_or_path])
# From local dir path
elif os.path.isdir(pretrained_model_name_or_path):
for file_id, file_name in cls.resource_files_names.items():
full_file_name = os.path.join(pretrained_model_name_or_path, file_name)
if os.path.isfile(full_file_name):
resource_files[file_id] = full_file_name
resource_files["model_config_file"] = os.path.join(pretrained_model_name_or_path, cls.model_config_file)
else:
for file_id, file_name in cls.resource_files_names.items():
resource_files[file_id] = file_name
# default_root = os.path.join(MODEL_HOME, pretrained_model_name_or_path)
resolved_resource_files = {}
for file_id, file_path in resource_files.items():
if file_path is None or os.path.isfile(file_path):
resolved_resource_files[file_id] = file_path
continue
resolved_resource_files[file_id] = resolve_file_path(
pretrained_model_name_or_path,
[file_path],
subfolder,
cache_dir=cache_dir,
from_aistudio=from_aistudio,
from_hf_hub=from_hf_hub,
)
# Prepare model initialization kwargs
# Did we saved some inputs and kwargs to reload ?
model_config_file = resolved_resource_files.pop("model_config_file", None)
if model_config_file is not None:
with io.open(model_config_file, encoding="utf-8") as f:
init_kwargs = json.load(f)
else:
init_kwargs = init_configuration
# position args are stored in kwargs, maybe better not include
init_args = init_kwargs.pop("init_args", ())
# class name corresponds to this configuration
init_class = init_kwargs.pop("init_class", cls.base_model_class.__name__)
# Check if the loaded config matches the current model class's __init__
# arguments. If not match, the loaded config is for the base model class.
if init_class == cls.base_model_class.__name__:
base_args = init_args
base_kwargs = init_kwargs
derived_args = ()
derived_kwargs = {}
base_arg_index = None
else: # extract config for base model
derived_args = list(init_args)
derived_kwargs = init_kwargs
base_arg = None
for i, arg in enumerate(init_args):
if isinstance(arg, dict) and "init_class" in arg:
assert arg.pop("init_class") == cls.base_model_class.__name__, (
"pretrained base model should be {}"
).format(cls.base_model_class.__name__)
base_arg_index = i
base_arg = arg
break
for arg_name, arg in init_kwargs.items():
if isinstance(arg, dict) and "init_class" in arg:
assert arg.pop("init_class") == cls.base_model_class.__name__, (
"pretrained base model should be {}"
).format(cls.base_model_class.__name__)
base_arg_index = arg_name
base_arg = arg
break
base_args = base_arg.pop("init_args", ())
base_kwargs = base_arg
if cls == cls.base_model_class:
# Update with newly provided args and kwargs for base model
base_args = base_args if not args else args
base_kwargs.update(kwargs)
vocab_file = resolved_resource_files.pop("vocab_file", None)
if vocab_file and base_kwargs.get("vocab_file", None) is None:
base_kwargs["vocab_file"] = vocab_file
assert base_kwargs.get("vocab_file", None) is not None, "The vocab "
f"file is None. Please reload the class {cls.__name__} with pretrained_name."
model = cls(*base_args, **base_kwargs)
else:
# Update with newly provided args and kwargs for derived model
base_parameters_dict = inspect.signature(cls.base_model_class.__init__).parameters
for k, v in kwargs.items():
if k in base_parameters_dict:
base_kwargs[k] = v
vocab_file = resolved_resource_files.pop("vocab_file", None)
if vocab_file and base_kwargs.get("vocab_file", None) is None:
base_kwargs["vocab_file"] = vocab_file
assert base_kwargs.get("vocab_file", None) is not None, "The vocab "
f"file is None. Please reload the class {cls.__name__} with pretrained_name."
base_model = cls.base_model_class(*base_args, **base_kwargs)
if base_arg_index is not None:
derived_args[base_arg_index] = base_model
else:
derived_args = (base_model,) # assume at the first position
derived_args = derived_args if not args else args
derived_parameters_dict = inspect.signature(cls.__init__).parameters
for k, v in kwargs.items():
if k in derived_parameters_dict:
derived_kwargs[k] = v
model = cls(*derived_args, **derived_kwargs)
# Maybe need more ways to load resources.
weight_path = resolved_resource_files["model_state"]
assert weight_path.endswith(".pdparams"), "suffix of weight must be .pdparams"
state_dict = paddle.load(weight_path)
logger.info("Loaded parameters from %s" % weight_path)
# Make sure we are able to load base models as well as derived models
# (with heads)
start_prefix = ""
model_to_load = model
state_to_load = state_dict
unexpected_keys = []
missing_keys = []
if not hasattr(model, cls.base_model_prefix) and any(
s.startswith(cls.base_model_prefix) for s in state_dict.keys()
):
# base model
state_to_load = {}
start_prefix = cls.base_model_prefix + "."
for k, v in state_dict.items():
if k.startswith(cls.base_model_prefix):
state_to_load[k[len(start_prefix) :]] = v
else:
unexpected_keys.append(k)
if hasattr(model, cls.base_model_prefix) and not any(
s.startswith(cls.base_model_prefix) for s in state_dict.keys()
):
# derived model (base model with heads)
model_to_load = getattr(model, cls.base_model_prefix)
for k in model.state_dict().keys():
if not k.startswith(cls.base_model_prefix):
missing_keys.append(k)
if len(missing_keys) > 0:
logger.info(
"Weights of {} not initialized from pretrained model: {}".format(
model.__class__.__name__, missing_keys
)
)
if len(unexpected_keys) > 0:
logger.info(
"Weights from pretrained model not used in {}: {}".format(model.__class__.__name__, unexpected_keys)
)
if paddle.in_dynamic_mode():
model_to_load.set_state_dict(state_to_load)
return model
return model, state_to_load
@staticmethod
def load_vocabulary(filepath):
token_to_idx = {}
with io.open(filepath, "r", encoding="utf-8") as f:
for index, line in enumerate(f):
token = line.rstrip("\n")
token_to_idx[token] = int(index)
return token_to_idx
def save_pretrained(self, save_dir):
"""
Saves model configuration and related resources (model state) as files
under `save_dir`. The model configuration would be saved into a file named
"model_config.json", and model state would be saved into a file
named "model_state.pdparams".
The `save_dir` can be used in `from_pretrained` as argument value
of `pretrained_model_name_or_path` to re-load the trained model.
Args:
save_dir (str): Directory to save files into.
Example:
.. code-block::
from paddlenlp.transformers import BertForSequenceClassification
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
model.save_pretrained('./trained_model/')
# reload from save_directory
model = BertForSequenceClassification.from_pretrained('./trained_model/')
"""
assert not os.path.isfile(save_dir), "Saving directory ({}) should be a directory, not a file".format(save_dir)
os.makedirs(save_dir, exist_ok=True)
# Save model config
self.save_model_config(save_dir)
# Save model
if paddle.in_dynamic_mode():
file_name = os.path.join(save_dir, list(self.resource_files_names.values())[0])
paddle.save(self.state_dict(), file_name)
else:
logger.warning("Save pretrained model only supported dygraph mode for now!")
# Save resources file
self.save_resources(save_dir)
def save_resources(self, save_directory):
"""
Save tokenizer related resources to `resource_files_names` indicating
files under `save_directory` by copying directly. Override it if necessary.
Args:
save_directory (str): Directory to save files into.
"""
for name, file_name in self.resource_files_names.items():
src_path = self.init_config["init_args"][0].get(name, None)
dst_path = os.path.join(save_directory, file_name)
if src_path and os.path.abspath(src_path) != os.path.abspath(dst_path):
copyfile(src_path, dst_path)
class ActScalesLoader:
def __init__(
self,
scale_json_file_path="act_scales.json",
key_map_dict=None,
num_of_layers=None,
):
with open(scale_json_file_path) as json_file:
self.scale_dict = json.load(json_file)
self.key_map = key_map_dict
self.scale = {}
for scale_type, key_template in self.key_map.items():
self.scale[scale_type] = np.full([num_of_layers], fill_value=-1.0, dtype="float32")
for i in range(num_of_layers):
if key_template.replace("#", str(i)) in self.scale_dict.keys():
self.scale[scale_type][i] = 1 / self.scale_dict[key_template.replace("#", str(i))]
class WeightScalesLoader:
def __init__(
self,
scale_json_file_path="weight_scales.json",
key_map_dict=None,
num_of_layers=None,
concat_qkv=False,
concat_ffn1=False,
):
with open(scale_json_file_path) as json_file:
self.scale_dict = json.load(json_file)
self.key_map = key_map_dict
self.scale = {}
for scale_type, key_template in self.key_map.items():
no_skip_layer_list = []
n = 1
for i in range(num_of_layers):
if key_template.replace("#", str(i)) in self.scale_dict.keys():
no_skip_layer_list.append(key_template.replace("#", str(i)))
if len(no_skip_layer_list) > 0:
n = len(self.scale_dict[no_skip_layer_list[0]])
self.scale[scale_type] = np.full([num_of_layers, n], fill_value=-1.0, dtype="float32")
for i in range(num_of_layers):
if key_template.replace("#", str(i)) in self.scale_dict.keys():
self.scale[scale_type][i, :] = self.scale_dict[key_template.replace("#", str(i))]
# concat qkv and ffn1
if concat_qkv:
self.scale["qkv_weight_scale"] = []
if concat_ffn1:
self.scale["ffn1_weight_scale"] = []
for i in range(num_of_layers):
if concat_qkv:
self.scale["qkv_weight_scale"].append(
np.concatenate(
[
self.scale["q_weight_scale"][i, :],
self.scale["k_weight_scale"][i, :],
self.scale["v_weight_scale"][i, :],
]
)
)
if concat_ffn1:
self.scale["ffn1_weight_scale"].append(
np.concatenate([self.scale["ffn1_1_weight_scale"][i, :], self.scale["ffn1_2_weight_scale"][i, :]])
)
class PerTensorWeightScalesLoader:
"""
Load Per Tensor Weight Scale from json file
"""
def __init__(
self,
scale_json_file_path="weight_scales.json",
key_map_dict=None,
num_of_layers=None,
):
"""load weight scales from json file."""
with open(scale_json_file_path) as json_file:
self.scale_dict = json.load(json_file)
self.key_map = key_map_dict
self.scale = {}
for scale_type, key_template in self.key_map.items():
no_skip_layer_list = []
scale_shape = [1]
for i in range(num_of_layers):
if key_template.replace("#", str(i)) in self.scale_dict.keys():
no_skip_layer_list.append(key_template.replace("#", str(i)))
if len(no_skip_layer_list) > 0:
scale_shape = np.array(self.scale_dict[no_skip_layer_list[0]]).shape
self.scale[scale_type] = np.full(((num_of_layers,) + tuple(scale_shape)), fill_value=-1.0)
for i in range(num_of_layers):
if key_template.replace("#", str(i)) in self.scale_dict.keys():
self.scale[scale_type][i] = self.scale_dict[key_template.replace("#", str(i))]
if "qkv_weight_scale" not in self.scale.keys():
self.scale["qkv_weight_scale"] = np.full((num_of_layers), fill_value=-1.0).astype(np.float32)
for i in range(num_of_layers):
qkv_weight_scale = max(
self.scale["q_weight_scale"][i],
self.scale["k_weight_scale"][i],
self.scale["v_weight_scale"][i],
)
self.scale["qkv_weight_scale"][i] = qkv_weight_scale
class CacheScaleLoader:
def __init__(
self,
scale_json_file_path="cache_scales.json",
key_map_dict=None,
num_of_layers=None,
num_heads=None,
num_key_value_heads=None,
):
with open(scale_json_file_path) as json_file:
self.scale_dict = json.load(json_file)
self.key_map = key_map_dict
self.scale = {}
for scale_type, key_template in self.key_map.items():
if "cache_k" in scale_type:
scale_type_out = "cache_k_out_scale"
else:
scale_type_out = "cache_v_out_scale"
self.scale[scale_type] = np.full([num_of_layers, num_key_value_heads], fill_value=-1.0)
self.scale[scale_type_out] = np.full([num_of_layers, num_key_value_heads], fill_value=-1.0)
for i in range(num_of_layers):
if key_template.replace("#", str(i)) in self.scale_dict.keys():
if num_heads != num_key_value_heads:
self.scale[scale_type][i, :] = [
127.0 / self.scale_dict[key_template.replace("#", str(i))][j]
for j in range(0, num_heads, num_heads // num_key_value_heads)
]
else:
self.scale[scale_type][i, :] = [
127.0 / self.scale_dict[key_template.replace("#", str(i))][j]
for j in range(0, num_key_value_heads)
]
self.scale[scale_type_out][i, :] = [
1.0 / self.scale[scale_type][i, j] for j in range(0, num_key_value_heads)
]