forked from paperswithbacktest/awesome-systematic-trading
-
Notifications
You must be signed in to change notification settings - Fork 0
/
crude-oil-predicts-equity-returns.py
389 lines (301 loc) · 16 KB
/
crude-oil-predicts-equity-returns.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
from AlgorithmImports import *
import numpy as np
from scipy.optimize import minimize
import statsmodels.api as sm
sp100_stocks = ['AAPL','MSFT','AMZN','FB','BRKB','GOOGL','GOOG','JPM','JNJ','V','PG','XOM','UNH','BAC','MA','T','DIS','INTC','HD','VZ','MRK','PFE','CVX','KO','CMCSA','CSCO','PEP','WFC','C','BA','ADBE','WMT','CRM','MCD','MDT','BMY','ABT','NVDA','NFLX','AMGN','PM','PYPL','TMO','COST','ABBV','ACN','HON','NKE','UNP','UTX','NEE','IBM','TXN','AVGO','LLY','ORCL','LIN','SBUX','AMT','LMT','GE','MMM','DHR','QCOM','CVS','MO','LOW','FIS','AXP','BKNG','UPS','GILD','CHTR','CAT','MDLZ','GS','USB','CI','ANTM','BDX','TJX','ADP','TFC','CME','SPGI','COP','INTU','ISRG','CB','SO','D','FISV','PNC','DUK','SYK','ZTS','MS','RTN','AGN','BLK']
def MonthDiff(d1, d2):
return (d1.year - d2.year) * 12 + d1.month - d2.month
def Return(values):
return (values[-1] - values[0]) / values[0]
def Volatility(values):
values = np.array(values)
returns = (values[1:] - values[:-1]) / values[:-1]
return np.std(returns)
def MultipleLinearRegression(x, y):
x = np.array(x).T
x = sm.add_constant(x)
result = sm.OLS(endog=y, exog=x).fit()
return result
# Custom fee model.
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))
# Quandl free data
class QuandlFutures(PythonQuandl):
def __init__(self):
self.ValueColumnName = "settle"
# Quandl "value" data
class QuandlValue(PythonQuandl):
def __init__(self):
self.ValueColumnName = 'Value'
# Quandl short interest data.
class QuandlFINRA_ShortVolume(PythonQuandl):
def __init__(self):
self.ValueColumnName = 'SHORTVOLUME' # also 'TOTALVOLUME' is accesible
# Commitments of Traders data.
# NOTE: IMPORTANT: Data order must be ascending (datewise).
# Data source: https://commitmentsoftraders.org/cot-data/
# Data description: https://commitmentsoftraders.org/wp-content/uploads/Static/CoTData/file_key.html
class CommitmentsOfTraders(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("data.quantpedia.com/backtesting_data/futures/cot/{0}.PRN".format(config.Symbol.Value), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv)
# File example.
# DATE OPEN HIGH LOW CLOSE VOLUME OI
# ---- ---- ---- --- ----- ------ --
# DATE LARGE SPECULATOR COMMERCIAL HEDGER SMALL TRADER
# LONG SHORT LONG SHORT LONG SHORT
def Reader(self, config, line, date, isLiveMode):
data = CommitmentsOfTraders()
data.Symbol = config.Symbol
if not line[0].isdigit(): return None
split = line.split(',')
# Prevent lookahead bias.
data.Time = datetime.strptime(split[0], "%Y%m%d") + timedelta(days=1)
data['LARGE_SPECULATOR_LONG'] = int(split[1])
data['LARGE_SPECULATOR_SHORT'] = int(split[2])
data['COMMERCIAL_HEDGER_LONG'] = int(split[3])
data['COMMERCIAL_HEDGER_SHORT'] = int(split[4])
data['SMALL_TRADER_LONG'] = int(split[5])
data['SMALL_TRADER_SHORT'] = int(split[6])
data['open_interest'] = int(split[1]) + int(split[2]) + int(split[3]) + int(split[4]) + int(split[5]) + int(split[6])
data.Value = int(split[1])
return data
# Quantpedia bond yield data.
# NOTE: IMPORTANT: Data order must be ascending (datewise)
class QuantpediaIndices(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("data.quantpedia.com/backtesting_data/index/{0}.csv".format(config.Symbol.Value), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv)
def Reader(self, config, line, date, isLiveMode):
data = QuantpediaIndices()
data.Symbol = config.Symbol
if not line[0].isdigit(): return None
split = line.split(',')
data.Time = datetime.strptime(split[0], "%Y-%m-%d") + timedelta(days=1)
data['close'] = float(split[1])
data.Value = float(split[1])
return data
# Quantpedia bond yield data.
# NOTE: IMPORTANT: Data order must be ascending (datewise)
class QuantpediaBondYield(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("data.quantpedia.com/backtesting_data/bond_yield/{0}.csv".format(config.Symbol.Value), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv)
def Reader(self, config, line, date, isLiveMode):
data = QuantpediaBondYield()
data.Symbol = config.Symbol
if not line[0].isdigit(): return None
split = line.split(',')
data.Time = datetime.strptime(split[0], "%Y-%m-%d") + timedelta(days=1)
data['yield'] = float(split[1])
data.Value = float(split[1])
return data
# Quantpedia data.
# NOTE: IMPORTANT: Data order must be ascending (datewise)
class QuantpediaFutures(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("data.quantpedia.com/backtesting_data/futures/{0}.csv".format(config.Symbol.Value), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv)
def Reader(self, config, line, date, isLiveMode):
data = QuantpediaFutures()
data.Symbol = config.Symbol
if not line[0].isdigit(): return None
split = line.split(';')
data.Time = datetime.strptime(split[0], "%d.%m.%Y") + timedelta(days=1)
data['back_adjusted'] = float(split[1])
data['spliced'] = float(split[2])
data.Value = float(split[1])
return data
# Commitments of Traders data.
# NOTE: IMPORTANT: Data order must be ascending (datewise).
# Data source: https://commitmentsoftraders.org/cot-data/
# Data description: https://commitmentsoftraders.org/wp-content/uploads/Static/CoTData/file_key.html
class CommitmentsOfTraders(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("data.quantpedia.com/backtesting_data/futures/cot/{0}.PRN".format(config.Symbol.Value), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv)
# File example.
# DATE OPEN HIGH LOW CLOSE VOLUME OI
# ---- ---- ---- --- ----- ------ --
# DATE LARGE SPECULATOR COMMERCIAL HEDGER SMALL TRADER
# LONG SHORT LONG SHORT LONG SHORT
def Reader(self, config, line, date, isLiveMode):
data = CommitmentsOfTraders()
data.Symbol = config.Symbol
if not line[0].isdigit(): return None
split = line.split(',')
# Prevent lookahead bias.
data.Time = datetime.strptime(split[0], "%Y%m%d") + timedelta(days=1)
data['LARGE_SPECULATOR_LONG'] = int(split[1])
data['LARGE_SPECULATOR_SHORT'] = int(split[2])
data['COMMERCIAL_HEDGER_LONG'] = int(split[3])
data['COMMERCIAL_HEDGER_SHORT'] = int(split[4])
data['SMALL_TRADER_LONG'] = int(split[5])
data['SMALL_TRADER_SHORT'] = int(split[6])
data.Value = int(split[1])
return data
# NOTE: Manager for new trades. It's represented by certain count of equally weighted brackets for long and short positions.
# If there's a place for new trade, it will be managed for time of holding period.
class TradeManager():
def __init__(self, algorithm, long_size, short_size, holding_period):
self.algorithm = algorithm # algorithm to execute orders in.
self.long_size = long_size
self.short_size = short_size
self.long_len = 0
self.short_len = 0
# Arrays of ManagedSymbols
self.symbols = []
self.holding_period = holding_period # Days of holding.
# Add stock symbol object
def Add(self, symbol, long_flag):
# Open new long trade.
managed_symbol = ManagedSymbol(symbol, self.holding_period, long_flag)
if long_flag:
# If there's a place for it.
if self.long_len < self.long_size:
self.symbols.append(managed_symbol)
self.algorithm.SetHoldings(symbol, 1 / self.long_size)
self.long_len += 1
else:
self.algorithm.Log("There's not place for additional trade.")
# Open new short trade.
else:
# If there's a place for it.
if self.short_len < self.short_size:
self.symbols.append(managed_symbol)
self.algorithm.SetHoldings(symbol, - 1 / self.short_size)
self.short_len += 1
else:
self.algorithm.Log("There's not place for additional trade.")
# Decrement holding period and liquidate symbols.
def TryLiquidate(self):
symbols_to_delete = []
for managed_symbol in self.symbols:
managed_symbol.days_to_liquidate -= 1
# Liquidate.
if managed_symbol.days_to_liquidate == 0:
symbols_to_delete.append(managed_symbol)
self.algorithm.Liquidate(managed_symbol.symbol)
if managed_symbol.long_flag: self.long_len -= 1
else: self.short_len -= 1
# Remove symbols from management.
for managed_symbol in symbols_to_delete:
self.symbols.remove(managed_symbol)
def LiquidateTicker(self, ticker):
symbol_to_delete = None
for managed_symbol in self.symbols:
if managed_symbol.symbol.Value == ticker:
self.algorithm.Liquidate(managed_symbol.symbol)
symbol_to_delete = managed_symbol
if managed_symbol.long_flag: self.long_len -= 1
else: self.short_len -= 1
break
if symbol_to_delete: self.symbols.remove(symbol_to_delete)
else: self.algorithm.Debug("Ticker is not held in portfolio!")
class ManagedSymbol():
def __init__(self, symbol, days_to_liquidate, long_flag):
self.symbol = symbol
self.days_to_liquidate = days_to_liquidate
self.long_flag = long_flag
class PortfolioOptimization(object):
def __init__(self, df_return, risk_free_rate, num_assets):
self.daily_return = df_return
self.risk_free_rate = risk_free_rate
self.n = num_assets # numbers of risk assets in portfolio
self.target_vol = 0.05
def annual_port_return(self, weights):
# calculate the annual return of portfolio
return np.sum(self.daily_return.mean() * weights) * 252
def annual_port_vol(self, weights):
# calculate the annual volatility of portfolio
return np.sqrt(np.dot(weights.T, np.dot(self.daily_return.cov() * 252, weights)))
def min_func(self, weights):
# method 1: maximize sharp ratio
return - self.annual_port_return(weights) / self.annual_port_vol(weights)
# method 2: maximize the return with target volatility
#return - self.annual_port_return(weights) / self.target_vol
def opt_portfolio(self):
# maximize the sharpe ratio to find the optimal weights
cons = ({'type': 'eq', 'fun': lambda x: np.sum(x) - 1})
bnds = tuple((0, 1) for x in range(2)) + tuple((0, 0.25) for x in range(self.n - 2))
opt = minimize(self.min_func, # object function
np.array(self.n * [1. / self.n]), # initial value
method='SLSQP', # optimization method
bounds=bnds, # bounds for variables
constraints=cons) # constraint conditions
opt_weights = opt['x']
return opt_weights
# https://quantpedia.com/strategies/crude-oil-predicts-equity-returns/
#
# Several types of oil can be used (Brent, WTI, Dubai etc.) without big differences in results. The source paper for
# this anomaly uses Arab Light crude oil. Monthly oil returns are used in the regression equation as an independent
# variable and equity returns are used as a dependent variable. The model is re-estimated every month and
# observations of the last month are added. The investor determines whether the expected stock market return in
# a specific month (based on regression results and conditional on the oil price change in the previous month) is higher
# or lower than the risk-free rate. The investor is fully invested in the market portfolio if the expected
# return is higher (bull market); he invests in cash if the expected return is lower (bear market).
from data_tools import QuantpediaFutures, QuandlValue, CustomFeeModel
from AlgorithmImports import *
import numpy as np
from collections import deque
from scipy import stats
class CrudeOilPredictsEquityReturns(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1)
self.SetCash(100000)
self.data = {}
self.symbols = [
"CME_ES1", # E-mini S&P 500 Futures, Continuous Contract #1
"CME_CL1" # Crude Oil Futures, Continuous Contract #1
]
self.cash = self.AddEquity('SHY', Resolution.Daily).Symbol
self.risk_free_rate = self.AddData(QuandlValue, 'FRED/DGS3MO', Resolution.Daily).Symbol
# Monhtly price data.
self.data = {}
for symbol in self.symbols:
data = self.AddData(QuantpediaFutures, symbol, Resolution.Daily)
data.SetLeverage(5)
data.SetFeeModel(CustomFeeModel())
self.data[symbol] = deque()
self.recent_month = -1
def OnData(self, data):
rebalance_flag = False
for symbol in self.symbols:
if symbol in data:
if self.recent_month != self.Time.month:
rebalance_flag = True
if data[symbol]:
price = data[symbol].Value
self.data[symbol].append(price)
if rebalance_flag:
self.recent_month = self.Time.month
rf_rate = 0
if self.Securities[self.risk_free_rate].GetLastData() and (self.Time.date() - self.Securities[self.risk_free_rate].GetLastData().Time.date()).days < 5:
rf_rate = self.Securities[self.risk_free_rate].Price
else:
return
if self.Securities[self.cash].GetLastData() and (self.Time.date() - self.Securities[self.cash].GetLastData().Time.date()).days >= 5:
return
market_prices = np.array(self.data[self.symbols[0]])
oil_prices = np.array(self.data[self.symbols[1]])
# At least one year of data is ready.
if len(market_prices) < 13 or len(oil_prices) < 13:
return
# Trim price series lenghts.
min_size = min(len(market_prices), len(oil_prices))
market_prices = market_prices[-min_size:]
oil_prices = oil_prices[-min_size:]
market_returns = (market_prices[1:] - market_prices[:-1]) / market_prices[:-1]
oil_returns = (oil_prices[1:] - oil_prices[:-1]) / oil_prices[:-1]
# Simple Linear Regression
# Y = C + (M * X)
# Y = α + (β ∗ X)
# Y = Dependent variable (output/outcome/prediction/estimation)
# C/α = Constant (Y-Intercept)
# M/β = Slope of the regression line (the effect that X has on Y)
# X = Independent variable (input variable used in the prediction of Y)
slope, intercept, r_value, p_value, std_err = stats.linregress(oil_returns[:-1], market_returns[1:])
X = oil_returns[-1]
expected_market_return = intercept + (slope * X)
if expected_market_return > rf_rate:
self.SetHoldings(self.symbols[0], 1)
else:
if self.Securities[self.cash].Price != 0:
self.SetHoldings(self.cash, 1)