-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathbert.py
121 lines (102 loc) · 5.39 KB
/
bert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import torch
from torch import nn
import torch.nn.functional as F
from utils import gelu, LayerNorm
from transformer import TransformerLayer, Embedding, LearnedPositionalEmbedding
class BERTLM(nn.Module):
def __init__(self, local_rank, vocab, embed_dim, ff_embed_dim, num_heads, dropout, layers, approx):
super(BERTLM, self).__init__()
self.vocab = vocab
self.embed_dim =embed_dim
self.tok_embed = Embedding(self.vocab.size, embed_dim, self.vocab.padding_idx)
self.pos_embed = LearnedPositionalEmbedding(embed_dim, device=local_rank)
self.seg_embed = Embedding(2, embed_dim, None)
self.out_proj_bias = nn.Parameter(torch.Tensor(self.vocab.size))
self.layers = nn.ModuleList()
for i in range(layers):
self.layers.append(TransformerLayer(embed_dim, ff_embed_dim, num_heads, dropout))
self.emb_layer_norm = LayerNorm(embed_dim)
self.one_more = nn.Linear(embed_dim, embed_dim)
self.one_more_layer_norm = LayerNorm(embed_dim)
self.one_more_nxt_snt = nn.Linear(embed_dim, embed_dim)
self.nxt_snt_pred = nn.Linear(embed_dim, 1)
self.dropout = dropout
self.device = local_rank
if approx == "none":
self.approx = None
elif approx == "adaptive":
self.approx = nn.AdaptiveLogSoftmaxWithLoss(self.embed_dim, self.vocab.size, [10000, 20000, 200000])
else:
raise NotImplementedError("%s has not been implemented"%approx)
self.reset_parameters()
def reset_parameters(self):
nn.init.constant_(self.out_proj_bias, 0.)
nn.init.constant_(self.nxt_snt_pred.bias, 0.)
nn.init.constant_(self.one_more.bias, 0.)
nn.init.constant_(self.one_more_nxt_snt.bias, 0.)
nn.init.normal_(self.nxt_snt_pred.weight, std=0.02)
nn.init.normal_(self.one_more.weight, std=0.02)
nn.init.normal_(self.one_more_nxt_snt.weight, std=0.02)
def work(self, inp, seg=None, layers=None):
# inp (torch.Tensor): token ids, size: (seq_len x bsz)
# seg (torch.Tensor): segment ids, size: (seq_len x bsz), default is None, which means all zeros.
# layers (list or None): list of layer ids or None: the list of the layers you want to return, default is None, which means only the last layer will be returned.
# return x (torch.Tensor): token representation, size: (seq_len x bsz x embed_dim)) if layers is None else (len(layers) x seq_len x bsz x embed_dim)
# return z (torch.Tensor): sequence representation, size: (bsz x embed_dim) if layers is None else (len(layers) x bsz x embed_dim)
if layers is not None:
tot_layers = len(self.layers)
for x in layers:
if not (-tot_layers <= x < tot_layers):
raise ValueError('layer %d out of range '%x)
layers = [ (x+tot_layers if x <0 else x) for x in layers]
max_layer_id = max(layers)
seq_len, bsz = inp.size()
if seg is None:
seg = torch.zeros_like(inp)
x = self.tok_embed(inp) + self.seg_embed(seg) + self.pos_embed(inp)
x = self.emb_layer_norm(x)
x = F.dropout(x, p=self.dropout, training=self.training)
padding_mask = torch.eq(inp, self.vocab.padding_idx)
if not padding_mask.any():
padding_mask = None
xs = []
for layer_id, layer in enumerate(self.layers):
x, _ ,_ = layer(x, self_padding_mask=padding_mask)
xs.append(x)
if layers is not None and layer_id >= max_layer_id:
break
if layers is not None:
x = torch.stack([xs[i] for i in layers])
z = torch.tanh(self.one_more_nxt_snt(x[:,0,:,:]))
else:
z = torch.tanh(self.one_more_nxt_snt(x[0]))
return x, z
def forward(self, truth, inp, seg, msk, nxt_snt_flag):
seq_len, bsz = inp.size()
x = self.tok_embed(inp) + self.seg_embed(seg) + self.pos_embed(inp)
x = self.emb_layer_norm(x)
x = F.dropout(x, p=self.dropout, training=self.training)
padding_mask = torch.eq(truth, self.vocab.padding_idx)
if not padding_mask.any():
padding_mask = None
for layer in self.layers:
x, _ ,_ = layer(x, self_padding_mask=padding_mask)
masked_x = x.masked_select(msk.unsqueeze(-1))
masked_x = masked_x.view(-1, self.embed_dim)
gold = truth.masked_select(msk)
y = self.one_more_layer_norm(gelu(self.one_more(masked_x)))
out_proj_weight = self.tok_embed.weight
if self.approx is None:
log_probs = torch.log_softmax(F.linear(y, out_proj_weight, self.out_proj_bias), -1)
else:
log_probs = self.approx.log_prob(y)
loss = F.nll_loss(log_probs, gold, reduction='mean')
z = torch.tanh(self.one_more_nxt_snt(x[0]))
nxt_snt_pred = torch.sigmoid(self.nxt_snt_pred(z).squeeze(1))
nxt_snt_acc = torch.eq(torch.gt(nxt_snt_pred, 0.5), nxt_snt_flag).float().sum().item()
nxt_snt_loss = F.binary_cross_entropy(nxt_snt_pred, nxt_snt_flag.float(), reduction='mean')
tot_loss = loss + nxt_snt_loss
_, pred = log_probs.max(-1)
tot_tokens = msk.float().sum().item()
acc = torch.eq(pred, gold).float().sum().item()
return (pred, gold), tot_loss, acc, tot_tokens, nxt_snt_acc, bsz