forked from ray-project/ray
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsb2rllib_rllib_example.py
46 lines (41 loc) · 1.29 KB
/
sb2rllib_rllib_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
"""
Example script on how to train, save, load, and test an RLlib agent.
Equivalent script with stable baselines: sb2rllib_sb_example.py.
Demonstrates transition from stable_baselines to Ray RLlib.
Run example: python sb2rllib_rllib_example.py
"""
import gym
import ray
import ray.rllib.algorithms.ppo as ppo
# settings used for both stable baselines and rllib
env_name = "CartPole-v1"
train_steps = 10000
learning_rate = 1e-3
save_dir = "saved_models"
# training and saving
analysis = ray.tune.run(
"PPO",
stop={"timesteps_total": train_steps},
config={"env": env_name, "lr": learning_rate},
checkpoint_at_end=True,
local_dir=save_dir,
)
# retrieve the checkpoint path
analysis.default_metric = "episode_reward_mean"
analysis.default_mode = "max"
checkpoint_path = analysis.get_best_checkpoint(trial=analysis.get_best_trial())
print(f"Trained model saved at {checkpoint_path}")
# load and restore model
agent = ppo.PPO(env=env_name)
agent.restore(checkpoint_path)
print(f"Agent loaded from saved model at {checkpoint_path}")
# inference
env = gym.make(env_name)
obs = env.reset()
for i in range(1000):
action = agent.compute_single_action(obs)
obs, reward, done, info = env.step(action)
env.render()
if done:
print(f"Cart pole dropped after {i} steps.")
break