forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathopenai_chat_completion_structured_outputs.py
94 lines (75 loc) · 2.29 KB
/
openai_chat_completion_structured_outputs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
from enum import Enum
from openai import OpenAI
from pydantic import BaseModel
client = OpenAI(
base_url="http://localhost:8000/v1",
api_key="-",
)
# Guided decoding by Choice (list of possible options)
completion = client.chat.completions.create(
model="Qwen/Qwen2.5-3B-Instruct",
messages=[{
"role": "user",
"content": "Classify this sentiment: vLLM is wonderful!"
}],
extra_body={"guided_choice": ["positive", "negative"]},
)
print(completion.choices[0].message.content)
# Guided decoding by Regex
prompt = ("Generate an email address for Alan Turing, who works in Enigma."
"End in .com and new line. Example result:"
"alan.turing@enigma.com\n")
completion = client.chat.completions.create(
model="Qwen/Qwen2.5-3B-Instruct",
messages=[{
"role": "user",
"content": prompt,
}],
extra_body={
"guided_regex": "\w+@\w+\.com\n",
"stop": ["\n"]
},
)
print(completion.choices[0].message.content)
# Guided decoding by JSON using Pydantic schema
class CarType(str, Enum):
sedan = "sedan"
suv = "SUV"
truck = "Truck"
coupe = "Coupe"
class CarDescription(BaseModel):
brand: str
model: str
car_type: CarType
json_schema = CarDescription.model_json_schema()
prompt = ("Generate a JSON with the brand, model and car_type of"
"the most iconic car from the 90's")
completion = client.chat.completions.create(
model="Qwen/Qwen2.5-3B-Instruct",
messages=[{
"role": "user",
"content": prompt,
}],
extra_body={"guided_json": json_schema},
)
print(completion.choices[0].message.content)
# Guided decoding by Grammar
simplified_sql_grammar = """
?start: select_statement
?select_statement: "SELECT " column_list " FROM " table_name
?column_list: column_name ("," column_name)*
?table_name: identifier
?column_name: identifier
?identifier: /[a-zA-Z_][a-zA-Z0-9_]*/
"""
prompt = ("Generate an SQL query to show the 'username' and 'email'"
"from the 'users' table.")
completion = client.chat.completions.create(
model="Qwen/Qwen2.5-3B-Instruct",
messages=[{
"role": "user",
"content": prompt,
}],
extra_body={"guided_grammar": simplified_sql_grammar},
)
print(completion.choices[0].message.content)