-
Notifications
You must be signed in to change notification settings - Fork 91
/
10.Rmd
371 lines (296 loc) · 9.97 KB
/
10.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
---
title: "Chapter 10: Nonconjugate priors and Metropolis-Hastings algorithms"
author: "Jesse Mu"
date: "December 8, 2016"
output:
html_document:
highlight: pygments
toc: yes
toc_float: yes
---
<!-- Setup -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
TeX: {
equationNumbers: {
autoNumber: "all"
}
}
});
</script>
```{r echo=FALSE, message=FALSE}
knitr::opts_chunk$set(fig.align = 'center', message = FALSE)
library(knitr)
library(ggplot2)
library(cowplot)
library(reshape)
```
<!-- Begin writing -->
# Generalized linear models
Poisson + logistic. No conjugate priors.
# Metropolis algorithm
<!--
$$
\begin{align}
r &= \frac{p(\theta^* \mid y)}{p(\theta)^{(s)} \mid y} \\
&= p(\theta^* \mid y) \frac{1}{p(\theta^{(s)} \mid y)} \\
\end{align}
$$
TODO expand. also might include the J ratio (that's why it has to be symmetric)
-->
```{r}
s2 = 1; t2 = 10; mu = 5
y = c(9.37, 10.18, 9.16, 11.60, 10.33)
theta = 0
delta2 = 2
S = 10000
THETA = rep(NA, S)
set.seed(1)
# theta - current sample
# theta.star - proposed sample according to proposal distribution
# log.r - acceptance ratio
for (s in 1:S) {
theta.star = rnorm(1, theta, sqrt(delta2))
log.r = (sum(dnorm(y, theta.star, sqrt(s2), log = TRUE)) +
dnorm(theta.star, mu, sqrt(t2), log = TRUE)) -
(sum(dnorm(y, theta, sqrt(s2), log = TRUE)) +
dnorm(theta, mu, sqrt(t2), log = TRUE))
if (log(runif(1)) < log.r) theta = theta.star
THETA[s] = theta
}
```
```{r}
theta.df = data.frame(
iteration = 1:S,
theta = THETA
)
ggplot(theta.df, aes(x = iteration, y = theta)) +
geom_line()
```
Interestingly, the effective sample sizes is quite low, only in the low thousands:
```{r}
library(coda)
effectiveSize(THETA)
```
```{r}
acf(THETA)
```
```{r}
real.df = data.frame(
theta = seq(8, 12, length = 500),
density = dnorm(seq(8, 12, length = 500), 10.03, .44)
)
ggplot(theta.df) +
geom_histogram(aes(x = theta, y = ..density..), bins = 60) +
geom_line(data = real.df, mapping = aes(x = theta, y = density))
# outs[, 4]
# distribution looks different if we include 25000 vs ... 1000
```
### Output of the Metropolis algorithm
Need to run until stationarity
Different proposal distributions. Delta as a tradeoff between rate of approach towards the HPD region versus overshooting (like learning rate in gradient descent, etc)
Acceptance rate of between 20 and 50% is good. Control length
## Combining Metropolis and Gibbs algorithms
Since proposal distributions for different parameters can all be different -
could use Gibbs for some parameters (where Gibbs is just a special case of
Metropolis-Hastings)
### A regression model with correlated errors
Here I explore the idea of running multiple independent MCMC chains, then
combining the data (which is theoretically OK). In `icecore_parallel.R` I take
the MH algorithm for analyzing the icecore data and distribute it across
multiple cores with `parallel::mclapply`. That file creates `icecore_mcmc` which
is analyzed here.
```{r}
if (!file.exists('./icecore_mcmc')) {
stop("Run icecore_parallel.R first to get MCMC data")
}
load('./icecore_mcmc')
# Should have "outs" now
# TODO: put colnames in icecore_parallel
colnames(outs) = c('b1', 'b2', 's2', 'phi')
plot(density(outs[seq(1, 80000), 'phi']))
plot(density(outs[seq(1, 80000, by = 25), 'phi']))
outs.df = data.frame(outs)
outs.df$iteration = 1:nrow(outs.df)
message(nrow(outs.df), " samples in ./icecore_mcmc")
ggplot(outs.df, aes(x = iteration, y = phi)) +
geom_line()
effectiveSize(outs.df$phi)
```
# Exercises
<!--
## 10.1
When $\theta_0 > \delta$, $\tilde{\theta} \in [\theta_0 - \delta, \theta_0 + \delta] > 0$, so $\theta_1 \sim \text{uniform}(\theta_0 - \delta, \theta_0 + \delta)$ and
$$
J(\theta_1 \mid \theta_0) = \frac{1}{2\delta}
$$
-->
## 10.2
```{r}
msparrownest = read.table(url('http://www.stat.washington.edu/people/pdhoff/Book/Data/hwdata/msparrownest.dat'))
```
For convenience let $\theta_i = P(Y_i = 1 \mid \alpha, \beta, x_i)$. Now we solve for $\theta_i$ in our model
$$
\begin{align}
& \log\left(\frac{\theta_i}{1 - \theta_i}\right) = \alpha + \beta x_i \\
\implies& \frac{\theta_i}{1 - \theta_i} = \exp(\alpha + \beta x_i) \\
\implies& \theta_i = \exp(\alpha + \beta x_i) - \theta_i \exp(\alpha + \beta x_i) \\
\implies& \theta_i = \frac{\exp(a + \beta x_i)}{1 + \exp(\alpha + \beta x_i)}
\end{align}
$$
So we know $Y_i \sim \text{Bernoulli}\left(p_i\right)$ where $p_i = \frac{\exp(a + \beta x_i)}{1 + \exp(a + \beta x_i)}$ and thus
$$
p(y_i \mid \alpha, \beta, x_i) = p_i^{y_i}(1 - p_i)^{1 - y_i}
$$
### a
Let $z_i = \exp(\alpha + \beta x_i)$ for simplicity.
$$
\begin{align}
p(\boldsymbol{y} \mid \alpha, \beta, x_i) &= \prod_{i = 1}^n p(y_i \mid \alpha, \beta, x_i) \\
&= \prod_{i = 1}^n p_i^{y_i} (1 - p_i)^{1 - y_i} \\
&= \prod_{i = 1}^n \left(\frac{z_i}{1 + z_i} \right)^{y_i} \left(1 - \frac{z_i}{1 + z_i} \right)^{1 - y_i} \\
&= \prod_{i = 1}^n \left(\frac{z_i}{1 + z_i} \right)^{y_i} \left(\frac{1 + z_i}{1 + z_i} - \frac{z_i}{1 + z_i} \right)^{1 - y_i} \\
&= \prod_{i = 1}^n \left(\frac{z_i}{1 + z_i} \right)^{y_i} \left(\frac{1}{1 + z_i}\right)^{1 - y_i} \\
&= \prod_{i = 1}^n \frac{z_i^{y_i}}{(1 + z_i)^{y_i}} \frac{1}{(1 + z_i)^{1 - y_i}} \\
&= \prod_{i = 1}^n \frac{z_i^{y_i}}{1 + z_i} \\
&= \prod_{i = 1}^n \frac{\exp(y_i (\alpha + \beta x_i))}{1 + \exp(\alpha + \beta x_i)} \\
\end{align}
$$
and I don't think that can be simplified further.
### b
It's helpful (I think) to think about this in terms of the log-odds i.e.
$\text{log-odds}(\theta_i) = a + \beta x_i$. If we have an uniformative prior
where we by default assume no interaction between wingspan $x_i$ and nesting,
then we should center our prior for $\beta$ around 0. If we also want to be
uninformative about our prior proportion of nesting birds regardless of
wingspan, then we should center our prior for $\alpha$ around 0 as well, our
prior expectation regardless of $x_i$ is $\text{log-odds}(\theta_i) = 0 + 0 x_i = 0$ (so not favoring nesting or not).
The question is what to use for a prior distribution and how diffuse to make our
priors. We would like priors for $\alpha$ and $\beta$ to be symmetric, so normal
distributions for both make sense. And we want our prior to be uninformative, so
we should set the variance of these normals high.
If $\alpha$ is always 0, then as $x$ moves from 10 to 15, we want our possible
values of $\beta$ to allow for a change in the log-odds ratio from approximately
0 to 1. Notice the log-odds ratio of some sufficiently small number e.g. `1e-5`
is `r log(1e-5 / (1 - 1e-5))` which is roughly 10. Since $x$ at a minimum is 10,
it makes sense to have most of our prior on $\beta$ in the range $[-10 / 10, 10 / 10] = [-1, 1]$,
so I'll set the standard deviation of the $\beta$ prior to 0.5
and the variance to 0.25.
Similarly I'll let the standard deviation of our
$\alpha$ prior to be 5 and the variance 25, so that, if $\beta = 0$, the most of
the $\alpha$ prior falls in the log-odds interval $[-10, 10]$.
So
$$
\begin{align}
\alpha &\sim \mathcal{N}(0, 25) \\
\beta &\sim \mathcal{N}(0, 0.25) \\
\end{align}
$$
### c
```{r}
library(MASS)
inv = solve
# In this sampling scheme, when we sample, we keep the values together
# ($\theta$). But when I store the values, I split them (ALPHA, BETA).
S = 10000
burnin = 5000
y = msparrownest[, 1]
n = length(y)
# Use linear regression format, where column 1 is 1 (for alpha) and column 2 is
# the wingspan
x = cbind(rep(1, n), msparrownest[, 2])
# Start with X^T X but increase until acceptance ratio between 30% - 50%
var.prop = 7 * inv(t(x) %*% x)
# Prior parameters
pmn.theta = c(0, 0)
psd.theta = sqrt(c(25, 0.25))
# Where to store values
ALPHA = numeric(S + burnin)
BETA = numeric(S + burnin)
# Acceptances
acs = 0
# Initial estimates
theta = c(0, 0)
# For calculating likelihood ratio
log.p.y = function(x, y, theta) {
exp_term = exp(x %*% theta)
p = exp_term / (1 + exp_term)
sum(dbinom(y, 1, p, log = TRUE))
}
p.theta = function(theta) {
sum(dnorm(theta, pmn.theta, psd.theta, log = TRUE))
}
for (s in 1:(S + burnin)) {
theta.star = mvrnorm(1, theta, var.prop)
lhr = log.p.y(x, y, theta.star) +
p.theta(theta.star) -
log.p.y(x, y, theta) -
p.theta(theta)
if (log(runif(1)) < lhr) {
theta = theta.star
if (s > burnin) {
acs = acs + 1
}
}
ALPHA[s] = theta[1]
BETA[s] = theta[2]
}
ALPHA = ALPHA[burnin:length(ALPHA)]
BETA = BETA[burnin:length(BETA)]
message("Acceptance ratio: ", acs / S) # Good to go
c(effectiveSize(ALPHA), effectiveSize(BETA))
```
### d
```{r}
alpha_prior = data.frame(
val = seq(-10, 10, length.out = 1000),
density = dnorm(seq(-10, 10, length.out = 1000), 0, 5),
var = 'alpha',
dist = 'prior'
)
beta_prior = data.frame(
val = seq(-1, 1, length.out = 1000),
density = dnorm(seq(-1, 1, length.out = 1000), 0, 0.5),
var = 'beta',
dist = 'prior'
)
prior_df = rbind(alpha_prior, beta_prior)
alpha_post = data.frame(
val = ALPHA,
var = 'alpha',
dist = 'posterior'
)
beta_post = data.frame(
val = BETA,
var = 'beta',
dist = 'posterior'
)
post_df = rbind(alpha_post, beta_post)
ggplot(prior_df, aes(x = val, y = density, color = dist)) +
geom_line() +
geom_density(data = post_df, mapping = aes(x = val, y = ..density..)) +
facet_wrap(~ var, scales = 'free')
```
### e
Using the samples of $\alpha$ and $\beta$, simply compute a distribution on
$f_{\alpha\beta}(x)$. We can then construct confidence intervals around this
distribution. However, we need to do this for many $x$ values:
```{r}
x_seq = seq(10, 15, length = 100)
quantiles = sapply(x_seq, function(x) {
exp_term = exp(ALPHA + BETA * x)
fab = exp_term / (1 + exp_term)
quantile(fab, probs = c(0.025, 0.5, 0.975))
})
fab_df = data.frame(
wingspan = x_seq,
ymin = quantiles[1, ],
fpred = quantiles[2, ],
ymax = quantiles[3, ]
)
ggplot(fab_df, aes(x = wingspan, y = fpred, ymin = ymin, ymax = ymax)) +
geom_line() +
geom_ribbon(fill = 'grey', alpha = 0.5)
```
This is the logistic regressions' approximate probability of nesting based on
wingspan, although the confidence intervals are quite wide.