-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
Copy pathmultibackend_test.py
207 lines (169 loc) · 7.34 KB
/
multibackend_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# Copyright 2018 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
from absl.testing import absltest
import numpy as np
import numpy.random as npr
from unittest import SkipTest
import jax
from jax._src import test_util as jtu
from jax import numpy as jnp
jax.config.parse_flags_with_absl()
npr.seed(0)
class MultiBackendTest(jtu.JaxTestCase):
"""Tests jit targeting to different backends."""
@jtu.sample_product(backend=['cpu', 'gpu', 'tpu', None])
@jtu.ignore_warning(category=DeprecationWarning,
message="backend and device argument")
def testMultiBackend(self, backend):
if backend not in ('cpu', jtu.device_under_test(), None):
raise SkipTest("Backend is not CPU or the device under test")
@partial(jax.jit, backend=backend)
def fun(x, y):
return jnp.matmul(x, y)
x = npr.uniform(size=(10, 10))
y = npr.uniform(size=(10, 10))
z_host = np.matmul(x, y)
z = fun(x, y)
self.assertAllClose(z, z_host, rtol=1e-2)
correct_platform = backend if backend else jtu.device_under_test()
self.assertEqual(list(z.devices())[0].platform, correct_platform)
@jtu.sample_product(
ordering=[('cpu', None), ('gpu', None), ('tpu', None), (None, None)]
)
@jtu.ignore_warning(category=DeprecationWarning,
message="backend and device argument")
def testMultiBackendNestedJit(self, ordering):
outer, inner = ordering
if outer not in ('cpu', jtu.device_under_test(), None):
raise SkipTest("Backend is not CPU or the device under test")
@partial(jax.jit, backend=outer)
def fun(x, y):
@partial(jax.jit, backend=inner)
def infun(x, y):
return jnp.matmul(x, y)
return infun(x, y) + jnp.ones_like(x)
x = npr.uniform(size=(10, 10))
y = npr.uniform(size=(10, 10))
z_host = np.matmul(x, y) + np.ones_like(x)
z = fun(x, y)
self.assertAllClose(z, z_host, rtol=1e-2)
correct_platform = outer if outer else jtu.device_under_test()
self.assertEqual(list(z.devices())[0].platform, correct_platform)
@jtu.sample_product(
ordering=[('cpu', 'gpu'), ('gpu', 'cpu'), ('cpu', 'tpu'), ('tpu', 'cpu'),
(None, 'cpu'), (None, 'gpu'), (None, 'tpu'),
],
)
@jtu.ignore_warning(category=DeprecationWarning,
message="backend and device argument")
def testMultiBackendNestedJitConflict(self, ordering):
outer, inner = ordering
if outer not in ('cpu', jtu.device_under_test(), None):
raise SkipTest("Backend is not CPU or the device under test")
if inner not in ('cpu', jtu.device_under_test(), None):
raise SkipTest("Backend is not CPU or the device under test")
if outer is None and inner == jtu.device_under_test():
raise SkipTest("(None, device) is allowed")
if outer is None:
raise SkipTest("The inner device will dictate the device assignment for "
"the entire computation. So if inner is CPU and outer is "
"None, then the computation will be execute on CPU.")
@partial(jax.jit, backend=outer)
def fun(x, y):
@partial(jax.jit, backend=inner)
def infun(x, y):
return jnp.matmul(x, y)
return infun(x, y) + jnp.ones_like(x)
x = npr.uniform(size=(10, 10))
y = npr.uniform(size=(10, 10))
self.assertRaises(ValueError, lambda: fun(x, y))
@jtu.sample_product(backend=['cpu', 'gpu', 'tpu'])
@jtu.ignore_warning(category=DeprecationWarning,
message="backend and device argument")
def testGpuMultiBackendOpByOpReturn(self, backend):
if backend not in ('cpu', jtu.device_under_test()):
raise SkipTest("Backend is not CPU or the device under test")
@partial(jax.jit, backend=backend)
def fun(x, y):
return jnp.matmul(x, y)
x = npr.uniform(size=(10,10))
y = npr.uniform(size=(10,10))
z = fun(x, y)
w = jnp.sin(z)
self.assertEqual(list(z.devices())[0].platform, backend)
self.assertEqual(list(w.devices())[0].platform, backend)
@jtu.skip_on_devices("cpu") # test can only fail with non-cpu backends
@jtu.ignore_warning(category=DeprecationWarning,
message="backend and device argument")
def testJitCpu(self):
@partial(jax.jit, backend='cpu')
def get_arr(scale):
return scale + jnp.ones((2, 2))
x = get_arr(0.1)
a = x / x.shape[0]
b = x + jnp.ones_like(x)
c = x + jnp.eye(2)
self.assertEqual(a.devices(), {jax.devices('cpu')[0]})
self.assertEqual(b.devices(), {jax.devices('cpu')[0]})
self.assertEqual(c.devices(), {jax.devices('cpu')[0]})
@jtu.skip_on_devices("cpu") # test can only fail with non-cpu backends
@jtu.ignore_warning(category=DeprecationWarning,
message="backend and device argument")
def test_closed_over_values_device_placement(self):
# see https://github.com/jax-ml/jax/issues/1431
def f(): return jnp.add(3., 4.)
self.assertNotEqual(jax.jit(f)().devices(),
{jax.devices('cpu')[0]})
self.assertEqual(jax.jit(f, backend='cpu')().devices(),
{jax.devices('cpu')[0]})
@jtu.skip_on_devices("cpu") # test only makes sense on non-cpu backends
@jtu.ignore_warning(category=DeprecationWarning,
message="backend and device argument")
def test_jit_on_nondefault_backend(self):
cpus = jax.devices("cpu")
self.assertNotEmpty(cpus)
# Since we are not on CPU, some other backend will be the default
default_dev = jax.devices()[0]
self.assertNotEqual(default_dev.platform, "cpu")
data_on_cpu = jax.device_put(1, device=cpus[0])
self.assertEqual(data_on_cpu.devices(), {cpus[0]})
def my_sin(x): return jnp.sin(x)
# jit without any device spec follows the data
result1 = jax.jit(my_sin)(2)
self.assertEqual(result1.devices(), {default_dev})
result2 = jax.jit(my_sin)(data_on_cpu)
self.assertEqual(result2.devices(), {cpus[0]})
# jit with `device` spec places the data on the specified device
result3 = jax.jit(my_sin, device=cpus[0])(2)
self.assertEqual(result3.devices(), {cpus[0]})
# jit with `backend` spec places the data on the specified backend
result4 = jax.jit(my_sin, backend="cpu")(2)
self.assertEqual(result4.devices(), {cpus[0]})
@jtu.skip_on_devices("cpu") # test only makes sense on non-cpu backends
def test_indexing(self):
# https://github.com/jax-ml/jax/issues/2905
cpus = jax.devices("cpu")
x = jax.device_put(np.ones(2), cpus[0])
y = x[0]
self.assertEqual(y.devices(), {cpus[0]})
@jtu.skip_on_devices("cpu") # test only makes sense on non-cpu backends
def test_sum(self):
# https://github.com/jax-ml/jax/issues/2905
cpus = jax.devices("cpu")
x = jax.device_put(np.ones(2), cpus[0])
y = x.sum()
self.assertEqual(y.devices(), {cpus[0]})
if __name__ == "__main__":
absltest.main(testLoader=jtu.JaxTestLoader())