-
Notifications
You must be signed in to change notification settings - Fork 1
/
parameters.json
147 lines (147 loc) · 4.44 KB
/
parameters.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
{
"batch_size": [32, 64],
"learning_rate": [0.001, 0.01],
"model_params": {
"MLP": {
"hidden_layers": [
[8],
[8, 16],
[16, 8],
[8, 16, 32],
[32, 16, 8],
[8, 16, 32, 16, 8],
[32],
[32, 64],
[64, 32],
[32, 64, 128],
[128, 64, 32],
[32, 64, 128, 64, 32]
]
},
"LSTM": {
"layers": [1, 2, 4],
"units": [32, 64, 128],
"return_sequence": [true, false],
"recurrent_dropout": [0, 0.2],
"dense_dropout": [0, 0.2],
"dense_layers": [
[8],
[8, 16],
[16, 8],
[8, 16, 32],
[32, 16, 8],
[8, 16, 32, 16, 8],
[32, 64],
[64, 32],
[32, 64, 128],
[128, 64, 32],
[32, 64, 128, 64, 32]
]
},
"GRU": {
"layers": [1, 2, 4],
"units": [32, 64, 128],
"return_sequence": [true, false],
"recurrent_dropout": [0, 0.2, 0.4],
"dense_dropout": [0, 0.2, 0.4],
"dense_layers": [
[8],
[8, 16],
[16, 8],
[8, 16, 32],
[32, 16, 8],
[8, 16, 32, 16, 8],
[32, 64],
[64, 32],
[32, 64, 128],
[128, 64, 32],
[32, 64, 128, 64, 32]
]
},
"CNN": {
"conv_blocks": [
[[16, 3, 2]],
[[16, 5, 2], [16, 3, 2]],
[[16, 7, 2], [16, 5, 2], [16, 2, 2]],
[[16, 3, 0]],
[[16, 5, 0], [16, 3, 0]],
[[16, 7, 0], [16, 5, 0], [16, 2, 0]],
[[32, 3, 2]],
[[32, 5, 2], [32, 3, 2]],
[[32, 7, 2], [32, 5, 2], [32, 2, 2]],
[[32, 3, 0]],
[[32, 5, 0], [32, 3, 0]],
[[32, 7, 0], [32, 5, 0], [32, 2, 0]],
[[64, 3, 2]],
[[64, 5, 2], [64, 3, 2]],
[[64, 7, 2], [64, 5, 2], [64, 2, 2]],
[[64, 3, 0]],
[[64, 5, 0], [64, 3, 0]],
[[64, 7, 0], [64, 5, 0], [64, 2, 0]]
],
"dense_dropout": [0, 0.2],
"dense_layers": [
[8],
[8, 16],
[16, 8],
[8, 16, 32],
[32, 16, 8],
[8, 16, 32, 16, 8],
[32, 64],
[64, 32],
[32, 64, 128],
[128, 64, 32],
[32, 64, 128, 64, 32]
]
},
"TCN": {
"nb_stacks": [1, 3],
"nb_filters": [32, 64],
"dilations": [[1, 2, 4, 8], [1, 2, 4, 8, 16]],
"kernel_size": [3, 6],
"return_sequences": [true, false],
"tcn_dropout": [0, 0.2],
"dense_dropout": [0, 0.2],
"dense_layers": [
[8],
[8, 16],
[16, 8],
[8, 16, 32],
[32, 16, 8],
[8, 16, 32, 16, 8],
[32, 64],
[64, 32],
[32, 64, 128],
[128, 64, 32],
[32, 64, 128, 64, 32]
]
},
"XGBClassifier" : {
"eta" : [0.1, 0.3, 0.6],
"max_depth" : [2, 4, 6, 8, 10],
"grow_policy" : ["depthwise", "lossguide"],
"sampling_method": ["uniform", "gradient_based"]
},
"LinearSVC" : {
"max_iter" : [500, 1000, 2000],
"loss" : ["hinge", "squared_hinge"],
"penalty" : ["l2"]
},
"AdaBoostClassifier" : {
"n_estimators" : [25, 50, 100],
"learning_rate" : [0.8, 0.9, 1.0]
},
"RandomForestClassifier" : {
"n_jobs" : [-1],
"n_estimators" : [100, 300, 600],
"max_depth" : [2, 4, 6, 8, 10],
"min_samples_split" : [2, 4, 6, 8],
"min_samples_leaf": [1, 3, 5, 7]
},
"LogisticRegression" : {
"n_jobs" : [-1],
"penalty" : ["l2", "none"],
"solver" : ["lbfgs", "sag", "saga"]
}
}
}