🚧 WIP
Boosting adversarial attack with AdaGrad, AdaDelta, RMSProp, Adam and more...
- Python 3.6.5
- Tensorflow 1.12.0
- Numpy 1.15.4
- opencv-python 3.4.2.16
- scipy 1.1.0
Download the data and pretrained models
python agi_fgsm.py
to generate adversarial examples for inception_v3 using AGI-FGSM;python ri_fgsm.py
to generate adversarial examples for inception_v3 using RI-FGSM;python ai_fgsm.py
to generate adversarial examples for inception_v3 using AI-FGSM;python si_agi_fgsm.py
to generate adversarial examples for inception_v3 using SI-AGI-FGSM;python si_ri_fgsm.py
to generate adversarial examples for inception_v3 using SI-RI-FGSM;python si_ai_fgsm.py
to generate adversarial examples for inception_v3 using SI-AI-FGSM;python si_agi_ti_dim.py
to generate adversarial examples for inception_v3 using SI-AGI-TI-DIM;python si_ri_ti_dim.py
to generate adversarial examples for inception_v3 using SI-RI-TI-DIM;python si_ai_ti_dim.py
to generate adversarial examples for inception_v3 using SI-AI-TI-DIM;python simple_eval.py
: evaluate the attack success rate under 8 models including normal training models and adversarial training models.
Code refers to NAG attack