forked from AI4Finance-Foundation/ElegantRL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_FinRL_ElegantRL_China_A_shares.py
732 lines (589 loc) · 29.9 KB
/
demo_FinRL_ElegantRL_China_A_shares.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
import os
import time
import sys
from copy import deepcopy
import torch
import torch.nn as nn
import numpy as np
import numpy.random as rd
import pandas as pd
"""finance environment
Source: https://github.com/AI4Finance-Foundation/FinRL-Meta/blob/master/Demo_China_A_share_market.ipynb
Modify: Github YonV1943
"""
class StockTradingEnv:
def __init__(self, initial_amount=1e6, max_stock=1e2, buy_cost_pct=1e-3, sell_cost_pct=1e-3, gamma=0.99,
beg_idx=0, end_idx=1113):
self.df_pwd = './China_A_shares.pandas.dataframe'
self.npz_pwd = './China_A_shares.numpy.npz'
self.close_ary, self.tech_ary = self.load_data_from_disk()
self.close_ary = self.close_ary[beg_idx:end_idx]
self.tech_ary = self.tech_ary[beg_idx:end_idx]
print(f"| StockTradingEnv: close_ary.shape {self.close_ary.shape}")
print(f"| StockTradingEnv: tech_ary.shape {self.tech_ary.shape}")
self.max_stock = max_stock
self.buy_cost_rate = 1 + buy_cost_pct
self.sell_cost_rate = 1 - sell_cost_pct
self.initial_amount = initial_amount
self.gamma = gamma
# reset()
self.day = None
self.rewards = None
self.total_asset = None
self.cumulative_returns = 0
self.if_random_reset = True
self.amount = None
self.shares = None
self.shares_num = self.close_ary.shape[1]
amount_dim = 1
# environment information
self.env_name = 'StockTradingEnv-v2'
self.state_dim = self.shares_num + self.close_ary.shape[1] + self.tech_ary.shape[1] + amount_dim
self.action_dim = self.shares_num
self.if_discrete = False
self.max_step = len(self.close_ary)
def reset(self):
self.day = 0
if self.if_random_reset:
self.amount = self.initial_amount * rd.uniform(0.9, 1.1)
self.shares = (np.abs(rd.randn(self.shares_num).clip(-2, +2)) * 2 ** 6).astype(int)
else:
self.amount = self.initial_amount
self.shares = np.zeros(self.shares_num, dtype=np.float32)
self.rewards = list()
self.total_asset = (self.close_ary[self.day] * self.shares).sum() + self.amount
return self.get_state()
def get_state(self):
state = np.hstack((np.array(self.amount * 2 ** -16),
self.shares * 2 ** -9,
self.close_ary[self.day] * 2 ** -7,
self.tech_ary[self.day] * 2 ** -6,))
return state
def step(self, action):
self.day += 1
action = action.copy()
action[(-0.1 < action) & (action < 0.1)] = 0
action_int = (action * self.max_stock).astype(int)
# actions initially is scaled between -1 and 1
# convert into integer because we can't buy fraction of shares
for index in range(self.action_dim):
stock_action = action_int[index]
adj_close_price = self.close_ary[self.day, index] # `adjcp` denotes adjusted close price
if stock_action > 0: # buy_stock
delta_stock = min(self.amount // adj_close_price, stock_action)
self.amount -= adj_close_price * delta_stock * self.buy_cost_rate
self.shares[index] += delta_stock
elif self.shares[index] > 0: # sell_stock
delta_stock = min(-stock_action, self.shares[index])
self.amount += adj_close_price * delta_stock * self.sell_cost_rate
self.shares[index] -= delta_stock
state = self.get_state()
total_asset = (self.close_ary[self.day] * self.shares).sum() + self.amount
reward = (total_asset - self.total_asset) * 2 ** -6
self.rewards.append(reward)
self.total_asset = total_asset
done = self.day == self.max_step - 1
if done:
reward += 1 / (1 - self.gamma) * np.mean(self.rewards)
self.cumulative_returns = total_asset / self.initial_amount
return state, reward, done, {}
def load_data_from_disk(self, tech_id_list=None):
tech_id_list = [
"macd", "boll_ub", "boll_lb", "rsi_30", "cci_30", "dx_30", "close_30_sma", "close_60_sma",
] if tech_id_list is None else tech_id_list
if os.path.exists(self.npz_pwd):
ary_dict = np.load(self.npz_pwd, allow_pickle=True)
close_ary = ary_dict['close_ary']
tech_ary = ary_dict['tech_ary']
elif os.path.exists(self.df_pwd): # convert pandas.DataFrame to numpy.array
df = pd.read_pickle(self.df_pwd)
tech_ary = list()
close_ary = list()
df_len = len(df.index.unique()) # df_len = max_step
for day in range(df_len):
item = df.loc[day]
tech_items = [item[tech].values.tolist() for tech in tech_id_list]
tech_items_flatten = sum(tech_items, [])
tech_ary.append(tech_items_flatten)
close_ary.append(item.close)
close_ary = np.array(close_ary)
tech_ary = np.array(tech_ary)
np.savez_compressed(self.npz_pwd, close_ary=close_ary, tech_ary=tech_ary, )
else:
error_str = f"| StockTradingEnv need {self.df_pwd} or {self.npz_pwd}" \
f" download the following file and save in `.`" \
f" https://github.com/Yonv1943/Python/blob/master/scow/China_A_shares.pandas.dataframe (2.1MB)"
raise FileNotFoundError(error_str)
return close_ary, tech_ary
def check_env():
env = StockTradingEnv(beg_idx=834, end_idx=1113)
env.if_random_reset = False
evaluate_time = 4
"""
env = StockTradingEnv(beg_idx=0, end_idx=1113)
cumulative_returns of random action : 1.63
cumulative_returns of buy all share : 2.80
env = StockTradingEnv(beg_idx=0, end_idx=834)
cumulative_returns of random action : 1.94
cumulative_returns of buy all share : 2.51
env = StockTradingEnv(beg_idx=834, end_idx=1113)
cumulative_returns of random action : 1.12
cumulative_returns of buy all share : 1.19
"""
print()
policy_name = 'random action'
state = env.reset()
for _ in range(env.max_step * evaluate_time):
action = rd.uniform(-1, +1, env.action_dim)
state, reward, done, _ = env.step(action)
if done:
print(f'cumulative_returns of {policy_name}: {env.cumulative_returns:9.2f}')
state = env.reset()
dir(state)
print()
policy_name = 'buy all share'
state = env.reset()
for _ in range(env.max_step * evaluate_time):
action = np.ones(env.action_dim, dtype=np.float32)
state, reward, done, _ = env.step(action)
if done:
print(f'cumulative_returns of {policy_name}: {env.cumulative_returns:9.2f}')
state = env.reset()
dir(state)
print()
def get_gym_env_args(env, if_print) -> dict: # [ElegantRL.2021.12.12]
"""
Get a dict ``env_args`` about a standard OpenAI gym env information.
:param env: a standard OpenAI gym env
:param if_print: [bool] print the dict about env information.
:return: env_args [dict]
env_args = {
'env_num': 1, # [int] the environment number, 'env_num>1' in vectorized env
'env_name': env_name, # [str] the environment name, such as XxxXxx-v0
'max_step': max_step, # [int] the steps in an episode. (from env.reset to done).
'state_dim': state_dim, # [int] the dimension of state
'action_dim': action_dim, # [int] the dimension of action or the number of discrete action
'if_discrete': if_discrete, # [bool] action space is discrete or continuous
}
"""
import gym
env_num = getattr(env, 'env_num') if hasattr(env, 'env_num') else 1
if {'unwrapped', 'observation_space', 'action_space', 'spec'}.issubset(dir(env)): # isinstance(env, gym.Env):
env_name = getattr(env, 'env_name', None)
env_name = env.unwrapped.spec.id if env_name is None else env_name
state_shape = env.observation_space.shape
state_dim = state_shape[0] if len(state_shape) == 1 else state_shape # sometimes state_dim is a list
max_step = getattr(env, 'max_step', None)
max_step_default = getattr(env, '_max_episode_steps', None)
if max_step is None:
max_step = max_step_default
if max_step is None:
max_step = 2 ** 10
if_discrete = isinstance(env.action_space, gym.spaces.Discrete)
if if_discrete: # make sure it is discrete action space
action_dim = env.action_space.n
elif isinstance(env.action_space, gym.spaces.Box): # make sure it is continuous action space
action_dim = env.action_space.shape[0]
if not any(env.action_space.high - 1):
print('WARNING: env.action_space.high', env.action_space.high)
if not any(env.action_space.low - 1):
print('WARNING: env.action_space.low', env.action_space.low)
else:
raise RuntimeError('\n| Error in get_gym_env_info()'
'\n Please set these value manually: if_discrete=bool, action_dim=int.'
'\n And keep action_space in (-1, 1).')
else:
env_name = env.env_name
max_step = env.max_step
state_dim = env.state_dim
action_dim = env.action_dim
if_discrete = env.if_discrete
env_args = {'env_num': env_num,
'env_name': env_name,
'max_step': max_step,
'state_dim': state_dim,
'action_dim': action_dim,
'if_discrete': if_discrete, }
if if_print:
env_args_repr = repr(env_args)
env_args_repr = env_args_repr.replace(',', f",\n ")
env_args_repr = env_args_repr.replace('{', "{\n ")
env_args_repr = env_args_repr.replace('}', ",\n}")
print(f"env_args = {env_args_repr}")
return env_args
def kwargs_filter(func, kwargs: dict):
"""
Filter the variable in env func.
:param func: the function for creating an env.
:param kwargs: args for the env.
:return: filtered args.
"""
import inspect
sign = inspect.signature(func).parameters.values()
sign = {val.name for val in sign}
common_args = sign.intersection(kwargs.keys())
return {key: kwargs[key] for key in common_args} # filtered kwargs
def build_env(env_func=None, env_args=None):
env = env_func(**kwargs_filter(env_func.__init__, env_args.copy()))
return env
'''reinforcement learning
Source: https://github.com/AI4Finance-Foundation/ElegantRL/tree/master/elegantrl_helloworld
Modify: Github YonV1943
'''
class ActorPPO(nn.Module):
def __init__(self, mid_dim, mid_layer_num, state_dim, action_dim):
super().__init__()
self.net = build_fcn(mid_dim, mid_layer_num, inp_dim=state_dim, out_dim=action_dim)
# the logarithm (log) of standard deviation (std) of action, it is a trainable parameter
self.a_std_log = nn.Parameter(torch.zeros((1, action_dim)) - 0.5, requires_grad=True)
self.sqrt_2pi_log = np.log(np.sqrt(2 * np.pi))
def forward(self, state):
return self.net(state).tanh() # action
def get_action(self, state):
a_avg = self.net(state)
a_std = self.a_std_log.exp()
noise = torch.randn_like(a_avg)
action = a_avg + noise * a_std
return action, noise
def get_old_logprob(self, _action, noise):
delta = noise.pow(2) * 0.5
return -(self.a_std_log + self.sqrt_2pi_log + delta).sum(1) # old_logprob
def get_logprob_entropy(self, state, action):
a_avg = self.net(state)
a_std = self.a_std_log.exp()
delta = ((a_avg - action) / a_std).pow(2) * 0.5
logprob = -(self.a_std_log + self.sqrt_2pi_log + delta).sum(1) # new_logprob
dist_entropy = (logprob.exp() * logprob).mean() # policy entropy
return logprob, dist_entropy
@staticmethod
def get_a_to_e(action): # convert action of network to action of environment
return action.tanh()
class CriticPPO(nn.Module):
def __init__(self, mid_dim, mid_layer_num, state_dim, _action_dim):
super().__init__()
self.net = build_fcn(mid_dim, mid_layer_num, inp_dim=state_dim, out_dim=1)
def forward(self, state):
return self.net(state) # advantage value
def build_fcn(mid_dim, mid_layer_num, inp_dim, out_dim): # fcn (Fully Connected Network)
net_list = [nn.Linear(inp_dim, mid_dim), nn.ReLU(), ]
for _ in range(mid_layer_num):
net_list += [nn.Linear(mid_dim, mid_dim), nn.ReLU(), ]
net_list += [nn.Linear(mid_dim, out_dim), ]
return nn.Sequential(*net_list)
class AgentPPO:
def __init__(self, net_dim, state_dim, action_dim, gpu_id=0, args=None):
self.if_off_policy = False
self.act_class = getattr(self, "act_class", ActorPPO)
self.cri_class = getattr(self, "cri_class", CriticPPO)
self.if_act_target = getattr(args, 'if_act_target', False)
self.if_cri_target = getattr(args, "if_cri_target", False)
# AgentBase.__init__(self, net_dim, state_dim, action_dim, gpu_id, args)
self.gamma = getattr(args, 'gamma', 0.99)
self.env_num = getattr(args, 'env_num', 1)
self.batch_size = getattr(args, 'batch_size', 128)
self.repeat_times = getattr(args, 'repeat_times', 1.)
self.reward_scale = getattr(args, 'reward_scale', 1.)
self.mid_layer_num = getattr(args, 'mid_layer_num', 1)
self.learning_rate = getattr(args, 'learning_rate', 2 ** -12)
self.soft_update_tau = getattr(args, 'soft_update_tau', 2 ** -8)
self.if_off_policy = getattr(args, 'if_off_policy', True)
self.if_act_target = getattr(args, 'if_act_target', False)
self.if_cri_target = getattr(args, 'if_cri_target', False)
self.states = None # assert self.states == (self.env_num, state_dim)
self.device = torch.device(f"cuda:{gpu_id}" if (torch.cuda.is_available() and (gpu_id >= 0)) else "cpu")
self.traj_list = [[list() for _ in range(4 if self.if_off_policy else 5)]
for _ in range(self.env_num)] # for `self.explore_vec_env()`
act_class = getattr(self, "act_class", None)
cri_class = getattr(self, "cri_class", None)
self.act = act_class(net_dim, self.mid_layer_num, state_dim, action_dim).to(self.device)
self.cri = cri_class(net_dim, self.mid_layer_num, state_dim, action_dim).to(self.device) \
if cri_class else self.act
self.act_target = deepcopy(self.act) if self.if_act_target else self.act
self.cri_target = deepcopy(self.cri) if self.if_cri_target else self.cri
self.act_optimizer = torch.optim.Adam(self.act.parameters(), self.learning_rate)
self.cri_optimizer = torch.optim.Adam(self.cri.parameters(), self.learning_rate) \
if cri_class else self.act_optimizer
"""attribute"""
self.criterion = torch.nn.SmoothL1Loss()
self.ratio_clip = getattr(args, "ratio_clip", 0.25) # `ratio.clamp(1 - clip, 1 + clip)`
self.lambda_entropy = getattr(args, "lambda_entropy", 0.02) # could be 0.00~0.10
def explore_env(self, env, target_step) -> list:
traj_list = []
last_done = [0, ]
state = self.states[0]
step_i = 0
done = False
get_action = self.act.get_action
get_a_to_e = self.act.get_a_to_e
while step_i < target_step or not done:
ten_s = torch.as_tensor(state, dtype=torch.float32).unsqueeze(0)
ten_a, ten_n = [ten.cpu() for ten in get_action(ten_s.to(self.device))]
next_s, reward, done, _ = env.step(get_a_to_e(ten_a)[0].numpy())
traj_list.append((ten_s, reward, done, ten_a, ten_n))
step_i += 1
state = env.reset() if done else next_s
self.states[0] = state
last_done[0] = step_i
return self.convert_trajectory(traj_list, last_done)
def update_net(self, buffer):
with torch.no_grad():
buf_state, buf_reward, buf_mask, buf_action, buf_noise = [ten.to(self.device) for ten in buffer]
buf_len = buf_state.shape[0]
'''get buf_r_sum, buf_logprob'''
bs = 2 ** 10 # set a smaller 'BatchSize' when out of GPU memory.
buf_value = [self.cri_target(buf_state[i:i + bs]) for i in range(0, buf_len, bs)]
buf_value = torch.cat(buf_value, dim=0)
buf_logprob = self.act.get_old_logprob(buf_action, buf_noise)
buf_r_sum, buf_adv_v = self.get_reward_sum(buf_len, buf_reward, buf_mask, buf_value) # detach()
buf_adv_v = (buf_adv_v - buf_adv_v.mean()) / (buf_adv_v.std() + 1e-5)
# buf_adv_v: buffer data of adv_v value
del buf_noise
'''update network'''
obj_critic = obj_actor = None
update_times = int(1 + buf_len * self.repeat_times / self.batch_size)
for _ in range(update_times):
indices = torch.randint(buf_len, size=(self.batch_size,), requires_grad=False, device=self.device)
state = buf_state[indices]
r_sum = buf_r_sum[indices]
adv_v = buf_adv_v[indices]
action = buf_action[indices]
logprob = buf_logprob[indices]
'''PPO: Surrogate objective of Trust Region'''
new_logprob, obj_entropy = self.act.get_logprob_entropy(state, action) # it is obj_actor
ratio = (new_logprob - logprob.detach()).exp()
surrogate1 = adv_v * ratio
surrogate2 = adv_v * ratio.clamp(1 - self.ratio_clip, 1 + self.ratio_clip)
obj_surrogate = -torch.min(surrogate1, surrogate2).mean()
obj_actor = obj_surrogate + obj_entropy * self.lambda_entropy
self.optimizer_update(self.act_optimizer, obj_actor)
value = self.cri(state).squeeze(1) # critic network predicts the reward_sum (Q value) of state
obj_critic = self.criterion(value, r_sum)
self.optimizer_update(self.cri_optimizer, obj_critic)
a_std_log = getattr(self.act, 'a_std_log', torch.zeros(1)).mean()
return obj_critic.item(), -obj_actor.item(), a_std_log.item() # logging_tuple
def get_reward_sum(self, buf_len, buf_reward, buf_mask, buf_value):
buf_r_sum = torch.empty(buf_len, dtype=torch.float32, device=self.device) # reward sum
pre_r_sum = 0
for i in range(buf_len - 1, -1, -1):
buf_r_sum[i] = buf_reward[i] + buf_mask[i] * pre_r_sum
pre_r_sum = buf_r_sum[i]
buf_adv_v = buf_r_sum - buf_value[:, 0]
return buf_r_sum, buf_adv_v
def convert_trajectory(self, traj_list, _last_done): # [ElegantRL.2022.01.01]
# assert len(buf_items) == step_i
# assert len(buf_items[0]) in {4, 5}
# assert len(buf_items[0][0]) == self.env_num
traj_list = list(map(list, zip(*traj_list))) # state, reward, done, action, noise
# assert len(buf_items) == {4, 5}
# assert len(buf_items[0]) == step
# assert len(buf_items[0][0]) == self.env_num
'''stack items'''
traj_list[0] = torch.stack(traj_list[0]).squeeze(1)
traj_list[1] = (torch.tensor(traj_list[1], dtype=torch.float32) * self.reward_scale).unsqueeze(1)
traj_list[2] = ((1 - torch.tensor(traj_list[2], dtype=torch.float32)) * self.gamma).unsqueeze(1)
traj_list[3:] = [torch.stack(item).squeeze(1) for item in traj_list[3:]]
# assert all([buf_item.shape[:2] == (step, self.env_num) for buf_item in buf_items])
return traj_list
@staticmethod
def optimizer_update(optimizer, objective):
optimizer.zero_grad()
objective.backward()
optimizer.step()
class ReplayBufferList(list): # for on-policy
def __init__(self):
list.__init__(self)
def update_buffer(self, traj_list):
cur_items = list(map(list, zip(*traj_list)))
self[:] = [torch.cat(item, dim=0) for item in cur_items]
steps = self[1].shape[0]
r_exp = self[1].mean().item()
return steps, r_exp
class Arguments:
def __init__(self, agent, env_func=None, env_args=None):
self.env_func = env_func # env = env_func(*env_args)
self.env_args = env_args # env = env_func(*env_args)
self.env_num = self.env_args['env_num'] # env_num = 1. In vector env, env_num > 1.
self.max_step = self.env_args['max_step'] # the max step of an episode
self.env_name = self.env_args['env_name'] # the env name. Be used to set 'cwd'.
self.state_dim = self.env_args['state_dim'] # vector dimension (feature number) of state
self.action_dim = self.env_args['action_dim'] # vector dimension (feature number) of action
self.if_discrete = self.env_args['if_discrete'] # discrete or continuous action space
self.agent = agent # DRL algorithm
self.net_dim = 2 ** 7 # the middle layer dimension of Fully Connected Network
self.batch_size = 2 ** 7 # num of transitions sampled from replay buffer.
self.mid_layer_num = 1 # the middle layer number of Fully Connected Network
self.if_off_policy = self.get_if_off_policy() # agent is on-policy or off-policy
self.if_use_old_traj = False # save old data to splice and get a complete trajectory (for vector env)
if self.if_off_policy: # off-policy
self.max_memo = 2 ** 21 # capacity of replay buffer
self.target_step = 2 ** 10 # repeatedly update network to keep critic's loss small
self.repeat_times = 2 ** 0 # collect target_step, then update network
else: # on-policy
self.max_memo = 2 ** 12 # capacity of replay buffer
self.target_step = self.max_memo # repeatedly update network to keep critic's loss small
self.repeat_times = 2 ** 4 # collect target_step, then update network
'''Arguments for training'''
self.gamma = 0.99 # discount factor of future rewards
self.reward_scale = 2 ** 0 # an approximate target reward usually be closed to 256
self.learning_rate = 2 ** -12 # 2 ** -15 ~= 3e-5
self.soft_update_tau = 2 ** -8 # 2 ** -8 ~= 5e-3
'''Arguments for device'''
self.worker_num = 2 # rollout workers number pre GPU (adjust it to get high GPU usage)
self.thread_num = 8 # cpu_num for pytorch, `torch.set_num_threads(self.num_threads)`
self.random_seed = 0 # initialize random seed in self.init_before_training()
self.learner_gpus = 0 # `int` means the ID of single GPU, -1 means CPU
'''Arguments for evaluate'''
self.cwd = None # current working directory to save model. None means set automatically
self.if_remove = True # remove the cwd folder? (True, False, None:ask me)
self.break_step = +np.inf # break training if 'total_step > break_step'
'''Arguments for evaluate'''
self.eval_gap = 2 ** 7 # evaluate the agent per eval_gap seconds
self.eval_times = 2 ** 4 # number of times that get episode return
def init_before_training(self):
np.random.seed(self.random_seed)
torch.manual_seed(self.random_seed)
torch.set_num_threads(self.thread_num)
torch.set_default_dtype(torch.float32)
'''auto set cwd (current working directory)'''
if self.cwd is None:
self.cwd = f'./{self.env_name}_{self.agent.__name__[5:]}_{self.learner_gpus}'
'''remove history'''
if self.if_remove is None:
self.if_remove = bool(input(f"| Arguments PRESS 'y' to REMOVE: {self.cwd}? ") == 'y')
elif self.if_remove:
import shutil
shutil.rmtree(self.cwd, ignore_errors=True)
print(f"| Arguments Remove cwd: {self.cwd}")
else:
print(f"| Arguments Keep cwd: {self.cwd}")
os.makedirs(self.cwd, exist_ok=True)
def get_if_off_policy(self):
name = self.agent.__name__
return all((name.find('PPO') == -1, name.find('A2C') == -1)) # if_off_policy
def train_agent(args):
torch.set_grad_enabled(False)
args.init_before_training()
gpu_id = args.learner_gpus
'''init'''
env = build_env(args.env_func, args.env_args)
agent = args.agent(args.net_dim, args.state_dim, args.action_dim, gpu_id=gpu_id, args=args)
agent.states = [env.reset(), ]
buffer = ReplayBufferList()
'''start training'''
cwd = args.cwd
break_step = args.break_step
target_step = args.target_step
del args
start_time = time.time()
total_step = 0
save_gap = int(5e4)
total_step_counter = -save_gap
while True:
trajectory = agent.explore_env(env, target_step)
steps, r_exp = buffer.update_buffer((trajectory,))
torch.set_grad_enabled(True)
logging_tuple = agent.update_net(buffer)
torch.set_grad_enabled(False)
total_step += steps
if total_step_counter + save_gap < total_step:
total_step_counter = total_step
print(
f"Step:{total_step:8.2e} "
f"ExpR:{r_exp:8.2f} "
f"Returns:{env.cumulative_returns:8.2f} "
f"ObjC:{logging_tuple[0]:8.2f} "
f"ObjA:{logging_tuple[1]:8.2f} "
)
save_path = f"{cwd}/actor_{total_step:014.0f}_{time.time() - start_time:08.0f}_{r_exp:08.2f}.pth"
torch.save(agent.act.state_dict(), save_path)
if (total_step > break_step) or os.path.exists(f"{cwd}/stop"):
# stop training when reach `break_step` or `mkdir cwd/stop`
break
print(f'| UsedTime: {time.time() - start_time:.0f} | SavedDir: {cwd}')
def get_episode_return_and_step(env, act) -> (float, int): # [ElegantRL.2022.01.01]
"""
Evaluate the actor (policy) network on testing environment.
:param env: environment object in ElegantRL.
:param act: Actor (policy) network.
:return: episodic reward and number of steps needed.
"""
max_step = env.max_step
if_discrete = env.if_discrete
device = next(act.parameters()).device # net.parameters() is a Python generator.
state = env.reset()
episode_step = None
episode_return = 0.0 # sum of rewards in an episode
for episode_step in range(max_step):
s_tensor = torch.as_tensor(state, dtype=torch.float32, device=device).unsqueeze(0)
a_tensor = act(s_tensor)
if if_discrete:
a_tensor = a_tensor.argmax(dim=1)
action = a_tensor.detach().cpu().numpy()[0] # not need detach(), because using torch.no_grad() outside
state, reward, done, _ = env.step(action)
episode_return += reward
if done:
break
episode_return = getattr(env, 'cumulative_returns', episode_return)
episode_step += 1
return episode_return, episode_step
def load_torch_file(model, _path):
state_dict = torch.load(_path, map_location=lambda storage, loc: storage)
model.load_state_dict(state_dict)
"""train and evaluate"""
def run():
import sys
gpu_id = int(sys.argv[1]) if len(sys.argv) > 1 else 0
env = StockTradingEnv()
env_func = StockTradingEnv
env_args = get_gym_env_args(env=env, if_print=False)
env_args['beg_idx'] = 0 # training set
env_args['end_idx'] = 834 # training set
args = Arguments(AgentPPO, env_func=env_func, env_args=env_args)
args.target_step = args.max_step * 4
args.reward_scale = 2 ** -7
args.learning_rate = 2 ** -14
args.break_step = int(5e5)
args.learner_gpus = gpu_id
args.random_seed += gpu_id + 1943
train_agent(args)
def evaluate_models_in_directory(dir_path=None):
if dir_path is None:
gpu_id = int(sys.argv[1])
dir_path = f'StockTradingEnv-v2_PPO_{gpu_id}'
print(f"| evaluate_models_in_directory: gpu_id {gpu_id}")
print(f"| evaluate_models_in_directory: dir_path {dir_path}")
else:
gpu_id = -1
print(f"| evaluate_models_in_directory: gpu_id {gpu_id}")
print(f"| evaluate_models_in_directory: dir_path {dir_path}")
model_names = [name for name in os.listdir(dir_path) if name[:6] == 'actor_']
model_names.sort()
env_func = StockTradingEnv
env_args = {
'env_num': 1,
'env_name': 'StockTradingEnv-v2',
'max_step': 1113,
'state_dim': 151,
'action_dim': 15,
'if_discrete': False,
'beg_idx': 834, # testing set
'end_idx': 1113, # testing set
}
env = build_env(env_func=env_func, env_args=env_args)
env.if_random_reset = False
args = Arguments(AgentPPO, env_func=env_func, env_args=env_args)
device = torch.device(f"cuda:{gpu_id}" if (torch.cuda.is_available() and (gpu_id >= 0)) else "cpu")
actor = ActorPPO(mid_dim=args.net_dim,
mid_layer_num=args.mid_layer_num,
state_dim=args.state_dim,
action_dim=args.action_dim).to(device)
for model_name in model_names:
model_path = f"{dir_path}/{model_name}"
load_torch_file(actor, model_path)
cumulative_returns_list = [get_episode_return_and_step(env, actor)[0] for _ in range(4)]
cumulative_returns = np.mean(cumulative_returns_list)
print(f"cumulative_returns {cumulative_returns:9.3f} {model_name}")
if __name__ == '__main__':
check_env()
run()
evaluate_models_in_directory()