-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataset_functions.py
512 lines (455 loc) · 24.8 KB
/
dataset_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
import tensorflow as tf
import numpy as np
# code from here https://www.tensorflow.org/tutorials/load_data/tfrecord
def _bytes_feature(value):
"""Returns a bytes_list from a string / byte."""
if isinstance(value, type(tf.constant(0))):
value = value.numpy() # BytesList won't unpack a string from an EagerTensor.
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def _serialized_bytes_feature(value):
return _bytes_feature(tf.io.serialize_tensor(value))
def _float_feature(value):
"""Returns a float_list from a float / double."""
return tf.train.Feature(float_list=tf.train.FloatList(value=[value]))
def _int64_feature(value):
"""Returns an int64_list from a bool / enum / int / uint."""
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
def serialize_simulated_change_example(
image_location_wkt,
dem_rast,
forestmask,
target_image,
target_image_start_time,
target_image_data_take_id,
target_image_incidence_angle,
target_image_platform_heading,
target_image_temperature,
target_image_precipitations,
target_image_snow_depth,
target_image_mission_id,
input_image_stack,
input_image_start_times,
input_image_data_take_ids,
input_image_incidence_angles,
input_image_platform_headings,
input_image_temperatures,
input_image_precipitations,
input_image_snow_depths,
input_image_mission_ids,
num_simulated_changes,
simulated_change_mask,
img_superpixel_map,
img_superpixel_sets_json,
simulated_change_image,
target_image_prediction=None,
):
feature = {
'image_location': _bytes_feature(image_location_wkt.encode('utf-8')),
'dem_rast': _serialized_bytes_feature(dem_rast),
'forestmask': _serialized_bytes_feature(forestmask),
'target_image': _serialized_bytes_feature(target_image),
'target_image_temperature': _float_feature(target_image_temperature),
'target_image_snow_depth': _float_feature(target_image_snow_depth),
'target_image_precipitations': _serialized_bytes_feature(target_image_precipitations),
'target_image_start_time': _bytes_feature(target_image_start_time.encode('utf-8')),
'target_image_data_take_id': _bytes_feature(target_image_data_take_id.encode('utf-8')),
'target_image_incidence_angle': _float_feature(target_image_incidence_angle),
'target_image_platform_heading': _float_feature(target_image_platform_heading),
'target_image_mission_id': _bytes_feature(target_image_mission_id.encode('utf-8')),
'input_image_stack': _serialized_bytes_feature(input_image_stack),
'input_image_temperatures': _serialized_bytes_feature(input_image_temperatures),
'input_image_precipitations': _serialized_bytes_feature(input_image_precipitations),
'input_image_snow_depths': _serialized_bytes_feature(input_image_snow_depths),
'input_image_start_times': _serialized_bytes_feature(input_image_start_times),
'input_image_data_take_ids': _serialized_bytes_feature(input_image_data_take_ids),
'input_image_incidence_angles': _serialized_bytes_feature(input_image_incidence_angles),
'input_image_platform_headings': _serialized_bytes_feature(input_image_platform_headings),
'input_image_mission_ids': _serialized_bytes_feature(input_image_mission_ids),
'simulated_change_mask': _serialized_bytes_feature(simulated_change_mask),
'num_simulated_changes': _int64_feature(num_simulated_changes),
'img_superpixel_map': _serialized_bytes_feature(img_superpixel_map),
'img_superpixel_sets': _bytes_feature(img_superpixel_sets_json.encode('utf-8')),
'simulated_change_image': _serialized_bytes_feature(simulated_change_image),
}
if target_image_prediction is not None:
feature['target_image_prediction'] = _serialized_bytes_feature(target_image_prediction)
example_proto = tf.train.Example(features=tf.train.Features(feature=feature))
return example_proto.SerializeToString()
def serialize_example(
image_location_wkt,
dem_rast,
forestmask,
target_image,
target_image_start_time,
target_image_data_take_id,
target_image_incidence_angle,
target_image_platform_heading,
target_image_temperature,
target_image_precipitations,
target_image_snow_depth,
target_image_mission_id,
input_image_stack,
input_image_start_times,
input_image_data_take_ids,
input_image_incidence_angles,
input_image_platform_headings,
input_image_temperatures,
input_image_precipitations,
input_image_snow_depths,
input_image_mission_ids,
):
feature = {
'image_location': _bytes_feature(image_location_wkt.encode('utf-8')),
'dem_rast': _serialized_bytes_feature(dem_rast),
'forestmask': _serialized_bytes_feature(forestmask),
'target_image': _serialized_bytes_feature(target_image),
'target_image_temperature': _float_feature(target_image_temperature),
'target_image_snow_depth': _float_feature(target_image_snow_depth),
'target_image_precipitations': _serialized_bytes_feature(target_image_precipitations),
'target_image_start_time': _bytes_feature(target_image_start_time.encode('utf-8')),
'target_image_data_take_id': _bytes_feature(target_image_data_take_id.encode('utf-8')),
'target_image_incidence_angle': _float_feature(target_image_incidence_angle),
'target_image_platform_heading': _float_feature(target_image_platform_heading),
'target_image_mission_id': _bytes_feature(target_image_mission_id.encode('utf-8')),
'input_image_stack': _serialized_bytes_feature(input_image_stack),
'input_image_temperatures': _serialized_bytes_feature(input_image_temperatures),
'input_image_precipitations': _serialized_bytes_feature(input_image_precipitations),
'input_image_snow_depths': _serialized_bytes_feature(input_image_snow_depths),
'input_image_start_times': _serialized_bytes_feature(input_image_start_times),
'input_image_data_take_ids': _serialized_bytes_feature(input_image_data_take_ids),
'input_image_incidence_angles': _serialized_bytes_feature(input_image_incidence_angles),
'input_image_platform_headings': _serialized_bytes_feature(input_image_platform_headings),
'input_image_mission_ids': _serialized_bytes_feature(input_image_mission_ids),
}
example_proto = tf.train.Example(features=tf.train.Features(feature=feature))
return example_proto.SerializeToString()
# Last entry in all array parameters is the target
def _serialize_example(
image_location_wkt,
dem_rast,
forestmask,
images,
image_data_take_ids,
image_start_times,
incidence_angles,
platform_headings,
mission_ids,
temperatures,
precipitations,
snow_depths,
):
target_image = images[-2:]
target_image_start_time = image_start_times[-1]
target_image_data_take_id = image_data_take_ids[-1]
target_image_incidence_angle = incidence_angles[-1]
target_image_platform_heading = platform_headings[-1]
target_image_temperature = temperatures[-1]
target_image_precipitations = precipitations[-1]
target_image_snow_depth = snow_depths[-1]
target_image_mission_id = mission_ids[-1]
input_image_stack = images[0:-2]
input_image_start_times = image_start_times[0:-1]
input_image_data_take_ids = image_data_take_ids[0:-1]
input_image_incidence_angles = incidence_angles[0:-1]
input_image_platform_headings = platform_headings[0:-1]
input_image_temperatures = temperatures[0:-1]
input_image_precipitations = precipitations[0:-1]
input_image_snow_depths = snow_depths[0:-1]
input_image_mission_ids = mission_ids[0:-1]
return serialize_example(
image_location_wkt,
dem_rast,
forestmask,
target_image,
target_image_start_time,
target_image_data_take_id,
target_image_incidence_angle,
target_image_platform_heading,
target_image_temperature,
target_image_precipitations,
target_image_snow_depth,
target_image_mission_id,
input_image_stack,
input_image_start_times,
input_image_data_take_ids,
input_image_incidence_angles,
input_image_platform_headings,
input_image_temperatures,
input_image_precipitations,
input_image_snow_depths,
input_image_mission_ids,
)
feature_description = {
'image_location': tf.io.FixedLenFeature([], tf.string),
'dem_rast': tf.io.FixedLenFeature([], tf.string),
'forestmask': tf.io.FixedLenFeature([], tf.string, default_value=tf.io.serialize_tensor(np.empty(0, dtype=np.single))),
'target_image': tf.io.FixedLenFeature([], tf.string),
'target_image_temperature': tf.io.FixedLenFeature([], tf.float32),
'target_image_snow_depth': tf.io.FixedLenFeature([], tf.float32),
'target_image_precipitations': tf.io.FixedLenFeature([], tf.string),
'target_image_start_time': tf.io.FixedLenFeature([], tf.string),
'target_image_data_take_id': tf.io.FixedLenFeature([], tf.string),
'target_image_incidence_angle': tf.io.FixedLenFeature([], tf.float32),
'target_image_platform_heading': tf.io.FixedLenFeature([], tf.float32),
'target_image_mission_id': tf.io.FixedLenFeature([], tf.string, default_value=''),
'input_image_stack': tf.io.FixedLenFeature([], tf.string),
'input_image_temperatures': tf.io.FixedLenFeature([], tf.string),
'input_image_precipitations': tf.io.FixedLenFeature([], tf.string),
'input_image_snow_depths': tf.io.FixedLenFeature([], tf.string),
'input_image_start_times': tf.io.FixedLenFeature([], tf.string),
'input_image_data_take_ids': tf.io.FixedLenFeature([], tf.string),
'input_image_incidence_angles': tf.io.FixedLenFeature([], tf.string),
'input_image_platform_headings': tf.io.FixedLenFeature([], tf.string),
'input_image_mission_ids': tf.io.FixedLenFeature([], tf.string, default_value=tf.io.serialize_tensor(np.empty(0, dtype=np.dtype(('U', 3))))),
}
def parse_dataset_with_simulated_change(filename, compression_type):
raw_image_dataset = tf.data.TFRecordDataset(filename, compression_type=compression_type)
def _parse_example_fn(example_proto):
_feature_description = {
**feature_description,
'simulated_change_mask': tf.io.FixedLenFeature([], tf.string),
'num_simulated_changes': tf.io.FixedLenFeature([], tf.int64),
'img_superpixel_map': tf.io.FixedLenFeature([], tf.string),
'img_superpixel_sets': tf.io.FixedLenFeature([], tf.string),
'simulated_change_image': tf.io.FixedLenFeature([], tf.string),
'target_image_prediction': tf.io.FixedLenFeature([], tf.string, default_value=tf.io.serialize_tensor(np.empty(0, dtype=np.single))),
}
example = tf.io.parse_single_example(example_proto, _feature_description)
return {
'image_location': example['image_location'],
'dem_rast': tf.io.parse_tensor(example['dem_rast'], tf.float32),
'forestmask': tf.io.parse_tensor(example['forestmask'], tf.float32),
'target_image': tf.io.parse_tensor(example['target_image'], tf.float32),
'target_image_temperature': example['target_image_temperature'],
'target_image_snow_depth': example['target_image_snow_depth'],
'target_image_precipitations': tf.io.parse_tensor(example['target_image_precipitations'], tf.float64),
'target_image_start_time': example['target_image_start_time'],
'target_image_data_take_id': example['target_image_data_take_id'],
'target_image_incidence_angle': example['target_image_incidence_angle'],
'target_image_platform_heading': example['target_image_platform_heading'],
'target_image_mission_id': example['target_image_mission_id'],
'input_image_stack': tf.io.parse_tensor(example['input_image_stack'], tf.float32),
'input_image_temperatures': tf.io.parse_tensor(example['input_image_temperatures'], tf.float64),
'input_image_precipitations': tf.io.parse_tensor(example['input_image_precipitations'], tf.float64),
'input_image_snow_depths': tf.io.parse_tensor(example['input_image_snow_depths'], tf.float64),
'input_image_start_times': tf.io.parse_tensor(example['input_image_start_times'], tf.string),
'input_image_data_take_ids': tf.io.parse_tensor(example['input_image_data_take_ids'], tf.string),
'input_image_incidence_angles': tf.io.parse_tensor(example['input_image_incidence_angles'], tf.float64),
'input_image_platform_headings': tf.io.parse_tensor(example['input_image_platform_headings'], tf.float64),
'input_image_mission_ids': tf.io.parse_tensor(example['input_image_mission_ids'], tf.string),
'simulated_change_mask': tf.io.parse_tensor(example['simulated_change_mask'], tf.int32),
'num_simulated_changes': example['num_simulated_changes'],
'img_superpixel_map': tf.io.parse_tensor(example['img_superpixel_map'], tf.int64),
'img_superpixel_sets': example['img_superpixel_sets'],
'target_image_prediction': tf.io.parse_tensor(example['target_image_prediction'], tf.float32),
'simulated_change_image': tf.io.parse_tensor(example['simulated_change_image'], tf.float32),
}
raw_image_dataset = raw_image_dataset.map(_parse_example_fn)
return raw_image_dataset
def parse_dataset(filename, compression_type):
raw_image_dataset = tf.data.TFRecordDataset(filename, compression_type=compression_type)
def _parse_example_fn(example_proto):
example = tf.io.parse_single_example(example_proto, feature_description)
return {
'image_location': example['image_location'],
'dem_rast': tf.io.parse_tensor(example['dem_rast'], tf.float32),
'forestmask': tf.io.parse_tensor(example['forestmask'], tf.float32),
'target_image': tf.io.parse_tensor(example['target_image'], tf.float32),
'target_image_temperature': example['target_image_temperature'],
'target_image_snow_depth': example['target_image_snow_depth'],
'target_image_precipitations': tf.io.parse_tensor(example['target_image_precipitations'], tf.float64),
'target_image_start_time': example['target_image_start_time'],
'target_image_data_take_id': example['target_image_data_take_id'],
'target_image_incidence_angle': example['target_image_incidence_angle'],
'target_image_platform_heading': example['target_image_platform_heading'],
'target_image_mission_id': example['target_image_mission_id'],
'input_image_stack': tf.io.parse_tensor(example['input_image_stack'], tf.float32),
'input_image_temperatures': tf.io.parse_tensor(example['input_image_temperatures'], tf.float64),
'input_image_precipitations': tf.io.parse_tensor(example['input_image_precipitations'], tf.float64),
'input_image_snow_depths': tf.io.parse_tensor(example['input_image_snow_depths'], tf.float64),
'input_image_start_times': tf.io.parse_tensor(example['input_image_start_times'], tf.string),
'input_image_data_take_ids': tf.io.parse_tensor(example['input_image_data_take_ids'], tf.string),
'input_image_incidence_angles': tf.io.parse_tensor(example['input_image_incidence_angles'], tf.float64),
'input_image_platform_headings': tf.io.parse_tensor(example['input_image_platform_headings'], tf.float64),
'input_image_mission_ids': tf.io.parse_tensor(example['input_image_mission_ids'], tf.string),
}
raw_image_dataset = raw_image_dataset.map(_parse_example_fn)
return raw_image_dataset
def normalize(ds_stats):
def min_max(min, max, feature, a=0.0, b=1.0, clip=False):
result = a + ((feature - min) * (b - a) / (max - min))
if clip:
if tf.is_tensor(result):
result = tf.clip_by_value(result, min, max)
else:
result = np.clip(result, min, max)
return result
def std_norm(mean, var, feature):
std_dev = np.sqrt(var)
return (feature - mean) / std_dev
def f(sample):
img_std_dev = np.sqrt(ds_stats['sar_images']['var'])
img_mean = ds_stats['sar_images']['mean']
img_min = img_mean - (img_std_dev * 4)
img_max = img_mean + (img_std_dev * 4)
return {
'dem_rast': min_max(0, ds_stats['dem_rast']['max'], sample['dem_rast']),
'target_image': min_max(img_min, img_max, sample['target_image'], a=-1.0, b=1.0, clip=True),
'forestmask': sample['forestmask'], # note that this is 1, 0 mask, so no normalization
'input_image_stack': min_max(img_min, img_max, sample['input_image_stack'], a=-1.0, b=1.0, clip=True),
'input_image_snow_depths': min_max(0, ds_stats['snow_depths']['max'], sample['input_image_snow_depths']),
'target_image_snow_depth': min_max(0, ds_stats['snow_depths']['max'], sample['target_image_snow_depth']),
'input_image_precipitations': min_max(0, ds_stats['precipitations']['max'], sample['input_image_precipitations']),
'target_image_precipitations': min_max(0, ds_stats['precipitations']['max'], sample['target_image_precipitations']),
'input_image_temperatures': min_max(-30.0, 30.0, sample['input_image_temperatures'], a=-1.0, b=1.0),
'target_image_temperature': min_max(-30.0, 30.0, sample['target_image_temperature'], a=-1.0, b=1.0),
'input_image_platform_headings': sample['input_image_platform_headings'] / 360.0,
'target_image_platform_heading': sample['target_image_platform_heading'] / 360.0,
# The angle should be between 29.1 and 46 degrees accoring to this
# https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-1-sar/acquisition-modes/interferometric-wide-swath
'input_image_incidence_angles': min_max(29.0, 46.0, sample['input_image_incidence_angles']),
'target_image_incidence_angle': min_max(29.0, 46.0, sample['target_image_incidence_angle']),
'input_image_mission_ids': sample['input_image_mission_ids'],
'target_image_mission_id': sample['target_image_mission_id'],
}
return f
def x_y_split(sample):
target_mission_id = tf.cast(sample['target_image_mission_id'] == 'S1A', tf.float64)
input_mission_ids = tf.map_fn(
lambda x: tf.cast(x == 'S1A', tf.float64),
sample['input_image_mission_ids'],
fn_output_signature=tf.float64,
)
# NOTE! if you change this, also update ignore_weather_info and drop_condition_data functions
latent_metadata = tf.concat([
tf.reshape(sample['input_image_temperatures'], [-1]),
tf.reshape(sample['input_image_snow_depths'], [-1]),
tf.reshape(sample['input_image_platform_headings'], [-1]),
tf.reshape(sample['input_image_incidence_angles'], [-1]),
tf.reshape(sample['input_image_precipitations'], [-1]),
tf.reshape(input_mission_ids, [-1]),
[
sample['target_image_temperature'],
sample['target_image_snow_depth'],
sample['target_image_platform_heading'],
sample['target_image_incidence_angle'],
target_mission_id,
],
tf.reshape(sample['target_image_precipitations'], [-1]),
], axis=-1)
input_image_stack = tf.concat([
sample['input_image_stack'],
tf.expand_dims(sample['dem_rast'], axis=0),
], axis=0)
# Channel last format
input_image_stack = tf.transpose(input_image_stack, perm=[1, 2, 0])
target_image = tf.transpose(sample['target_image'], perm=[1, 2, 0])
d = {
'input_image_stack': input_image_stack,
'latent_metadata': latent_metadata,
'target_image': target_image,
'forestmask': sample['forestmask'],
'target_image': target_image,
}
return d
# Hacky way of removing the weather data from the latent vector to experiment
# how model works without them.
def ignore_weather_info(latent_vector_batch):
num_imgs_per_date = 4
num_precipitations_per_date = 4
# skip temperatures and snow_depths
input_platform_headings_slice = slice(num_imgs_per_date * 2, num_imgs_per_date * 3)
input_incidence_angles_slice = slice(num_imgs_per_date * 3, num_imgs_per_date * 4)
precipitation_offset = num_imgs_per_date * 4 + num_imgs_per_date * num_precipitations_per_date
input_mission_ids_slice = slice(precipitation_offset, precipitation_offset + num_imgs_per_date)
target_data_offset = precipitation_offset + num_imgs_per_date
target_platform_heading_idx = target_data_offset + 2
target_incidence_angle_idx = target_data_offset + 3
target_mission_id_idx = target_data_offset + 4
input_platform_headings = latent_vector_batch[:, input_platform_headings_slice]
input_incidence_angles = latent_vector_batch[:, input_incidence_angles_slice]
input_mission_ids = latent_vector_batch[:, input_mission_ids_slice]
target_platform_heading = latent_vector_batch[:, target_platform_heading_idx]
target_incidence_angle = latent_vector_batch[:, target_incidence_angle_idx]
target_mission_id = latent_vector_batch[:, target_mission_id_idx]
return (
input_platform_headings,
input_incidence_angles,
input_mission_ids,
target_platform_heading,
target_incidence_angle,
target_mission_id,
)
# Hacky way of removing acquisition condition data from the latent vector to
# experiment how model works without them.
def include_condition_data(
latent_vector_batch,
temperature=True,
snow_depth=True,
precipitation=True,
platform_heading=True,
incidence_angle=True,
mission_id=True,
):
num_imgs_per_date = 4
num_precipitations_per_date = 4
input_temperatures_slice = slice(0, num_imgs_per_date)
input_snow_depths_slice = slice(num_imgs_per_date, num_imgs_per_date * 2)
input_platform_headings_slice = slice(num_imgs_per_date * 2, num_imgs_per_date * 3)
input_incidence_angles_slice = slice(num_imgs_per_date * 3, num_imgs_per_date * 4)
precipitation_offset = num_imgs_per_date * 4 + num_imgs_per_date * num_precipitations_per_date
input_precipitation_slice = slice(num_imgs_per_date * 4, precipitation_offset)
input_mission_ids_slice = slice(precipitation_offset, precipitation_offset + num_imgs_per_date)
target_data_offset = precipitation_offset + num_imgs_per_date
target_temperature_idx = target_data_offset
target_snow_depth_idx = target_data_offset + 1
target_platform_heading_idx = target_data_offset + 2
target_incidence_angle_idx = target_data_offset + 3
target_mission_id_idx = target_data_offset + 4
target_precipitation_slice = slice(target_data_offset + 5, None)
input_temperatures = latent_vector_batch[:, input_temperatures_slice]
input_snow_depths = latent_vector_batch[:, input_snow_depths_slice]
input_precipitation = latent_vector_batch[:, input_precipitation_slice]
input_platform_headings = latent_vector_batch[:, input_platform_headings_slice]
input_incidence_angles = latent_vector_batch[:, input_incidence_angles_slice]
input_mission_ids = latent_vector_batch[:, input_mission_ids_slice]
target_platform_heading = latent_vector_batch[:, target_platform_heading_idx]
target_incidence_angle = latent_vector_batch[:, target_incidence_angle_idx]
target_mission_id = latent_vector_batch[:, target_mission_id_idx]
target_temperature = latent_vector_batch[:, target_temperature_idx]
target_snow_depth = latent_vector_batch[:, target_snow_depth_idx]
target_precipitation = latent_vector_batch[:, target_precipitation_slice]
# The order of the latent data should not be important, but lets keep it the same anyway
output = [None for _ in range(12)]
if temperature:
output[0] = input_temperatures
output[6] = target_temperature
if snow_depth:
output[1] = input_snow_depths
output[7] = target_snow_depth
if precipitation:
output[4] = input_precipitation
output[11] = target_precipitation
if platform_heading:
output[2] = input_platform_headings
output[8] = target_platform_heading
if incidence_angle:
output[3] = input_incidence_angles
output[9] = target_incidence_angle
if mission_id:
output[5] = input_mission_ids
output[10] = target_mission_id
# the function returns the data in following order
#input_temperatures,
#input_snow_depths,
#input_platform_headings,
#input_incidence_angles,
#input_precipitation,
#input_mission_ids,
#target_temperature,
#target_snow_depth,
#target_platform_heading,
#target_incidence_angle,
#target_mission_id,
#target_precipitation,
return tuple([i for i in output if i is not None])