-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathr50_ecm_1x.py
62 lines (54 loc) · 1.92 KB
/
r50_ecm_1x.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
_base_ = [
'../_base_/models/mask_rcnn_r50_fpn.py',
'../_base_/datasets/lvis_v1_instance.py',
'../_base_/default_runtime.py'
]
model = dict(
roi_head=dict(
bbox_head=dict(
num_classes=1203,
cls_predictor_cfg=dict(type='NormedLinear', tempearture=20),
loss_cls=dict(
type='EffectiveClassMarginLoss',
use_sigmoid=True,
fg_bg_ratio=6.3313,
num_classes=1203,
loss_weight=1.0,
)),
mask_head=dict(num_classes=1203,
predictor_cfg=dict(type='NormedConv2d', tempearture=20))),
test_cfg=dict(
rcnn=dict(
score_thr=0.0001,
# LVIS allows up to 300
max_per_img=300)))
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
dict(
type='Resize',
img_scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736),
(1333, 768), (1333, 800)],
multiscale_mode='value',
keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
]
# optimizer
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=dict(max_norm=5, norm_type=2)) # detectron2 default.
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=10000,
warmup_ratio=0.0001,
step=[8, 11])
runner = dict(type='EpochBasedRunner', max_epochs=12)
data = dict(train=dict(dataset=dict(pipeline=train_pipeline)))
evaluation = dict(interval=12, metric=['bbox', 'segm'])