-
Notifications
You must be signed in to change notification settings - Fork 14
/
densenet121.py
204 lines (161 loc) · 8.1 KB
/
densenet121.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# -*- coding: utf-8 -*-
from keras.optimizers import SGD
from keras.layers import Input, merge, ZeroPadding2D
from keras.layers.core import Dense, Dropout, Activation
from keras.layers.convolutional import Convolution2D
from keras.layers.pooling import AveragePooling2D, GlobalAveragePooling2D, MaxPooling2D
from keras.layers.normalization import BatchNormalization
from keras.layers.merge import concatenate
from keras.models import Model
import keras.backend as K
from sklearn.metrics import log_loss
from custom_layers.scale_layer import Scale
def densenet121_model(img_rows, img_cols, color_type=1, nb_dense_block=4, growth_rate=32, nb_filter=64, reduction=0.5, dropout_rate=0.0, weight_decay=1e-4, num_classes=None):
'''
DenseNet 121 Model for Keras
Model Schema is based on
https://github.com/flyyufelix/DenseNet-Keras
ImageNet Pretrained Weights
Theano: https://drive.google.com/open?id=0Byy2AcGyEVxfMlRYb3YzV210VzQ
TensorFlow: https://drive.google.com/open?id=0Byy2AcGyEVxfSTA4SHJVOHNuTXc
# Arguments
nb_dense_block: number of dense blocks to add to end
growth_rate: number of filters to add per dense block
nb_filter: initial number of filters
reduction: reduction factor of transition blocks.
dropout_rate: dropout rate
weight_decay: weight decay factor
classes: optional number of classes to classify images
weights_path: path to pre-trained weights
# Returns
A Keras model instance.
'''
eps = 1.1e-5
# compute compression factor
compression = 1.0 - reduction
# Handle Dimension Ordering for different backends
global concat_axis
if K.image_dim_ordering() == 'tf':
concat_axis = 3
img_input = Input(shape=(img_rows, img_cols, color_type), name='data')
else:
concat_axis = 1
img_input = Input(shape=(color_type, img_rows, img_cols), name='data')
# From architecture for ImageNet (Table 1 in the paper)
nb_filter = 64
nb_layers = [6,12,24,16] # For DenseNet-121
# Initial convolution
x = ZeroPadding2D((3, 3), name='conv1_zeropadding')(img_input)
x = Convolution2D(nb_filter, (7, 7), strides=(2, 2), name='conv1', use_bias=False)(x)
x = BatchNormalization(epsilon=eps, axis=concat_axis, name='conv1_bn')(x)
x = Scale(axis=concat_axis, name='conv1_scale')(x)
x = Activation('relu', name='relu1')(x)
x = ZeroPadding2D((1, 1), name='pool1_zeropadding')(x)
x = MaxPooling2D((3, 3), strides=(2, 2), name='pool1')(x)
# Add dense blocks
for block_idx in range(nb_dense_block - 1):
stage = block_idx+2
x, nb_filter = dense_block(x, stage, nb_layers[block_idx], nb_filter, growth_rate, dropout_rate=dropout_rate, weight_decay=weight_decay)
# Add transition_block
x = transition_block(x, stage, nb_filter, compression=compression, dropout_rate=dropout_rate, weight_decay=weight_decay)
nb_filter = int(nb_filter * compression)
final_stage = stage + 1
x, nb_filter = dense_block(x, final_stage, nb_layers[-1], nb_filter, growth_rate, dropout_rate=dropout_rate, weight_decay=weight_decay)
x = BatchNormalization(epsilon=eps, axis=concat_axis, name='conv'+str(final_stage)+'_blk_bn')(x)
x = Scale(axis=concat_axis, name='conv'+str(final_stage)+'_blk_scale')(x)
x = Activation('relu', name='relu'+str(final_stage)+'_blk')(x)
x_fc = GlobalAveragePooling2D(name='pool'+str(final_stage))(x)
x_fc = Dense(1000, name='fc6')(x_fc)
x_fc = Activation('softmax', name='prob')(x_fc)
model = Model(img_input, x_fc, name='densenet')
if K.image_dim_ordering() == 'th':
# Use pre-trained weights for Theano backend
weights_path = 'models/densenet121_weights_th.h5'
else:
# Use pre-trained weights for Tensorflow backend
weights_path = 'models/densenet121_weights_tf.h5'
model.load_weights(weights_path, by_name=True)
# Truncate and replace softmax layer for transfer learning
# Cannot use model.layers.pop() since model is not of Sequential() type
# The method below works since pre-trained weights are stored in layers but not in the model
x_newfc = GlobalAveragePooling2D(name='pool'+str(final_stage))(x)
x_newfc = Dense(num_classes, name='fc6')(x_newfc)
x_newfc = Activation('sigmoid', name='prob')(x_newfc)
model = Model(img_input, x_newfc)
# Learning rate is changed to 0.001
#sgd = SGD(lr=1e-3, decay=1e-6, momentum=0.9, nesterov=True)
#model.compile(optimizer=sgd, loss='categorical_crossentropy', metrics=['accuracy'])
return model
def conv_block(x, stage, branch, nb_filter, dropout_rate=None, weight_decay=1e-4):
'''Apply BatchNorm, Relu, bottleneck 1x1 Conv2D, 3x3 Conv2D, and option dropout
# Arguments
x: input tensor
stage: index for dense block
branch: layer index within each dense block
nb_filter: number of filters
dropout_rate: dropout rate
weight_decay: weight decay factor
'''
eps = 1.1e-5
conv_name_base = 'conv' + str(stage) + '_' + str(branch)
relu_name_base = 'relu' + str(stage) + '_' + str(branch)
# 1x1 Convolution (Bottleneck layer)
inter_channel = nb_filter * 4
x = BatchNormalization(epsilon=eps, axis=concat_axis, name=conv_name_base+'_x1_bn')(x)
x = Scale(axis=concat_axis, name=conv_name_base+'_x1_scale')(x)
x = Activation('relu', name=relu_name_base+'_x1')(x)
x = Convolution2D(inter_channel, (1, 1), name=conv_name_base+'_x1', use_bias=False)(x)
if dropout_rate:
x = Dropout(dropout_rate)(x)
# 3x3 Convolution
x = BatchNormalization(epsilon=eps, axis=concat_axis, name=conv_name_base+'_x2_bn')(x)
x = Scale(axis=concat_axis, name=conv_name_base+'_x2_scale')(x)
x = Activation('relu', name=relu_name_base+'_x2')(x)
x = ZeroPadding2D((1, 1), name=conv_name_base+'_x2_zeropadding')(x)
x = Convolution2D(nb_filter, (3, 3), name=conv_name_base+'_x2', use_bias=False)(x)
if dropout_rate:
x = Dropout(dropout_rate)(x)
return x
def transition_block(x, stage, nb_filter, compression=1.0, dropout_rate=None, weight_decay=1E-4):
''' Apply BatchNorm, 1x1 Convolution, averagePooling, optional compression, dropout
# Arguments
x: input tensor
stage: index for dense block
nb_filter: number of filters
compression: calculated as 1 - reduction. Reduces the number of feature maps in the transition block.
dropout_rate: dropout rate
weight_decay: weight decay factor
'''
eps = 1.1e-5
conv_name_base = 'conv' + str(stage) + '_blk'
relu_name_base = 'relu' + str(stage) + '_blk'
pool_name_base = 'pool' + str(stage)
x = BatchNormalization(epsilon=eps, axis=concat_axis, name=conv_name_base+'_bn')(x)
x = Scale(axis=concat_axis, name=conv_name_base+'_scale')(x)
x = Activation('relu', name=relu_name_base)(x)
x = Convolution2D(int(nb_filter * compression), (1, 1), name=conv_name_base, use_bias=False)(x)
if dropout_rate:
x = Dropout(dropout_rate)(x)
x = AveragePooling2D((2, 2), strides=(2, 2), name=pool_name_base)(x)
return x
def dense_block(x, stage, nb_layers, nb_filter, growth_rate, dropout_rate=None, weight_decay=1e-4, grow_nb_filters=True):
''' Build a dense_block where the output of each conv_block is fed to subsequent ones
# Arguments
x: input tensor
stage: index for dense block
nb_layers: the number of layers of conv_block to append to the model.
nb_filter: number of filters
growth_rate: growth rate
dropout_rate: dropout rate
weight_decay: weight decay factor
grow_nb_filters: flag to decide to allow number of filters to grow
'''
eps = 1.1e-5
concat_feat = x
for i in range(nb_layers):
branch = i+1
x = conv_block(concat_feat, stage, branch, growth_rate, dropout_rate, weight_decay)
concat_feat = concatenate([concat_feat, x], axis=concat_axis, name='concat_'+str(stage)+'_'+str(branch))
if grow_nb_filters:
nb_filter += growth_rate
return concat_feat, nb_filter