Use Tensorflow to train and learn images
The original implementation can be found at https://codelabs.developers.google.com/codelabs/tensorflow-for-poets/#0
We'll be using mobilenet with parameters 0.50 and 224 in this example.
photos
: contains all the photos for training the modelscripts
: will be calling the files here to run our modeltf_files
: outputs from the modeluploaded_photos
: dump photos that we want to classify into this folder.
tensorboard --logdir=tf_files/training_summaries &
Run this to start training images:
python -m scripts.retrain --bottleneck_dir=tf_files/bottlenecks --model_dir=tf_files/models/ --summaries=tf_files/training_summaries/mobilenet_0.50_224 --output_graph=tf_files/retrained_graph.pb --output_labels=tf_files/retrained_labels.txt --architecture=mobilenet_0.50_224 --image_dir=photos
This should take a little while.
Let's use an annoymous photo of an iPhone 7 plus to validate our trained model:
python -m scripts.label_image --graph=tf_files/retrained_graph.pb --image=uploaded_photos/photo1.jpg
You should get an output something like this:
iphone 7 plus 0.989413
xiaomi redmi 4a 0.00497179
tulips 0.00374058
roses 0.00186522
sunflowers 5.5651e-06
python -m scripts.label_image --graph=tf_files/retrained_graph.pb --image=uploaded_photos/photo2.jpg
You should get an output something like this:
xiaomi redmi 4a 0.999836
roses 7.8841e-05
tulips 7.47027e-05
iphone 7 plus 9.5819e-06
dandelion 3.06468e-07