forked from shieldlock/SoX-iPhone-Lib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreemp.c
117 lines (87 loc) · 3.37 KB
/
preemp.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
/*
* Revision 1.1 1996/08/19 22:30:58 jaf
* Initial revision
*
*/
/* -- translated by f2c (version 19951025).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
extern int preemp_(real *inbuf, real *pebuf, integer *nsamp, real *coef, real *z__);
/* ******************************************************************* */
/* PREEMP Version 55 */
/*
* Revision 1.1 1996/08/19 22:30:58 jaf
* Initial revision
* */
/* Revision 1.3 1996/03/14 23:16:29 jaf */
/* Just added a few comments about which array indices of the arguments */
/* are used, and mentioning that this subroutine has no local state. */
/* Revision 1.2 1996/03/11 23:23:34 jaf */
/* Added a bunch of comments to an otherwise simple subroutine. */
/* Revision 1.1 1996/02/07 14:48:48 jaf */
/* Initial revision */
/* ******************************************************************* */
/* Preemphasize speech with a single-zero filter. */
/* (When coef = .9375, preemphasis is as in LPC43.) */
/* Inputs: */
/* NSAMP - Number of samples to filter */
/* INBUF - Input speech buffer */
/* Indices 1 through NSAMP are read. */
/* COEF - Preemphasis coefficient */
/* Input/Output: */
/* Z - Filter state */
/* Output: */
/* PEBUF - Preemphasized speech buffer (can be equal to INBUF) */
/* Indices 1 through NSAMP are modified. */
/* This subroutine has no local state. */
/* Subroutine */ int preemp_(real *inbuf, real *pebuf, integer *nsamp, real *
coef, real *z__)
{
/* System generated locals */
integer i__1;
/* Local variables */
real temp;
integer i__;
/* Arguments */
/* Local variables */
/* None of these need to have their values saved from one */
/* invocation to the next. */
/* Logically, this subroutine computes the output sequence */
/* pebuf(1:nsamp) defined by: */
/* pebuf(i) = inbuf(i) - coef * inbuf(i-1) */
/* where inbuf(0) is defined by the value of z given as input to */
/* this subroutine. */
/* What is this filter's frequency response and phase response? */
/* Why is this filter applied to the speech? */
/* Could it be more efficient to apply multiple filters */
/* simultaneously, by combining them into one equivalent filter? */
/* Are there ever cases when "factoring" one high-order filter into
*/
/* multiple smaller-order filter actually reduces the number of */
/* arithmetic operations needed to perform them? */
/* When I first read this subroutine, I didn't understand why the */
/* variable temp was used. It seemed that the statements in the do
*/
/* loop could be replaced with the following: */
/* pebuf(i) = inbuf(i) - coef * z */
/* z = inbuf(i) */
/* The reason for temp is so that even if pebuf and inbuf are the */
/* same arrays in memory (i.e., they are aliased), then this */
/* subroutine will still work correctly. I didn't realize this */
/* until seeing the comment after PEBUF above that says "(can be */
/* equal to INBUF)". */
/* Parameter adjustments */
--pebuf;
--inbuf;
/* Function Body */
i__1 = *nsamp;
for (i__ = 1; i__ <= i__1; ++i__) {
temp = inbuf[i__] - *coef * *z__;
*z__ = inbuf[i__];
pebuf[i__] = temp;
/* L10: */
}
return 0;
} /* preemp_ */