1
+ {
2
+ "metadata" : {
3
+ "name" : " 01A_sklearn_overview"
4
+ },
5
+ "nbformat" : 3 ,
6
+ "nbformat_minor" : 0 ,
7
+ "worksheets" : [
8
+ {
9
+ "cells" : [
10
+ {
11
+ "cell_type" : " heading" ,
12
+ "level" : 1 ,
13
+ "metadata" : {},
14
+ "source" : [
15
+ " An Overview of Scikit-learn"
16
+ ]
17
+ },
18
+ {
19
+ "cell_type" : " markdown" ,
20
+ "metadata" : {},
21
+ "source" : [
22
+ " *Adapted from* [*http://scikit-learn.org/stable/tutorial/basic/tutorial.html*](http://scikit-learn.org/stable/tutorial/basic/tutorial.html)"
23
+ ]
24
+ },
25
+ {
26
+ "cell_type" : " code" ,
27
+ "collapsed" : false ,
28
+ "input" : [
29
+ " %pylab inline"
30
+ ],
31
+ "language" : " python" ,
32
+ "metadata" : {},
33
+ "outputs" : []
34
+ },
35
+ {
36
+ "cell_type" : " heading" ,
37
+ "level" : 2 ,
38
+ "metadata" : {},
39
+ "source" : [
40
+ " Loading an Example Dataset"
41
+ ]
42
+ },
43
+ {
44
+ "cell_type" : " code" ,
45
+ "collapsed" : false ,
46
+ "input" : [
47
+ " from sklearn import datasets\n " ,
48
+ " iris = datasets.load_iris()\n " ,
49
+ " digits = datasets.load_digits()\n " ,
50
+ " boston = datasets.load_boston()"
51
+ ],
52
+ "language" : " python" ,
53
+ "metadata" : {},
54
+ "outputs" : []
55
+ },
56
+ {
57
+ "cell_type" : " code" ,
58
+ "collapsed" : false ,
59
+ "input" : [
60
+ " digits.data"
61
+ ],
62
+ "language" : " python" ,
63
+ "metadata" : {},
64
+ "outputs" : []
65
+ },
66
+ {
67
+ "cell_type" : " code" ,
68
+ "collapsed" : false ,
69
+ "input" : [
70
+ " digits.target"
71
+ ],
72
+ "language" : " python" ,
73
+ "metadata" : {},
74
+ "outputs" : []
75
+ },
76
+ {
77
+ "cell_type" : " code" ,
78
+ "collapsed" : false ,
79
+ "input" : [
80
+ " digits.images[0]"
81
+ ],
82
+ "language" : " python" ,
83
+ "metadata" : {},
84
+ "outputs" : []
85
+ },
86
+ {
87
+ "cell_type" : " heading" ,
88
+ "level" : 2 ,
89
+ "metadata" : {},
90
+ "source" : [
91
+ " Learning and Predicting"
92
+ ]
93
+ },
94
+ {
95
+ "cell_type" : " code" ,
96
+ "collapsed" : false ,
97
+ "input" : [
98
+ " from sklearn import svm\n " ,
99
+ " clf = svm.SVC(gamma=0.001, C=100.)"
100
+ ],
101
+ "language" : " python" ,
102
+ "metadata" : {},
103
+ "outputs" : []
104
+ },
105
+ {
106
+ "cell_type" : " code" ,
107
+ "collapsed" : false ,
108
+ "input" : [
109
+ " clf.fit(digits.data[:-1], digits.target[:-1])"
110
+ ],
111
+ "language" : " python" ,
112
+ "metadata" : {},
113
+ "outputs" : []
114
+ },
115
+ {
116
+ "cell_type" : " code" ,
117
+ "collapsed" : false ,
118
+ "input" : [
119
+ " clf.predict(digits.data[-1])"
120
+ ],
121
+ "language" : " python" ,
122
+ "metadata" : {},
123
+ "outputs" : []
124
+ },
125
+ {
126
+ "cell_type" : " code" ,
127
+ "collapsed" : false ,
128
+ "input" : [
129
+ " plt.figure(figsize=(2, 2))\n " ,
130
+ " plt.imshow(digits.images[-1], interpolation='nearest', cmap=plt.cm.binary)"
131
+ ],
132
+ "language" : " python" ,
133
+ "metadata" : {},
134
+ "outputs" : []
135
+ },
136
+ {
137
+ "cell_type" : " code" ,
138
+ "collapsed" : false ,
139
+ "input" : [
140
+ " print digits.target[-1]"
141
+ ],
142
+ "language" : " python" ,
143
+ "metadata" : {},
144
+ "outputs" : []
145
+ },
146
+ {
147
+ "cell_type" : " heading" ,
148
+ "level" : 2 ,
149
+ "metadata" : {},
150
+ "source" : [
151
+ " Model Persistence"
152
+ ]
153
+ },
154
+ {
155
+ "cell_type" : " code" ,
156
+ "collapsed" : false ,
157
+ "input" : [
158
+ " from sklearn import svm\n " ,
159
+ " from sklearn import datasets\n " ,
160
+ " clf = svm.SVC()\n " ,
161
+ " iris = datasets.load_iris()\n " ,
162
+ " X, y = iris.data, iris.target\n " ,
163
+ " clf.fit(X, y)"
164
+ ],
165
+ "language" : " python" ,
166
+ "metadata" : {},
167
+ "outputs" : []
168
+ },
169
+ {
170
+ "cell_type" : " code" ,
171
+ "collapsed" : false ,
172
+ "input" : [
173
+ " import pickle\n " ,
174
+ " s = pickle.dumps(clf)\n " ,
175
+ " clf2 = pickle.loads(s)\n " ,
176
+ " clf2.predict(X[0])"
177
+ ],
178
+ "language" : " python" ,
179
+ "metadata" : {},
180
+ "outputs" : []
181
+ },
182
+ {
183
+ "cell_type" : " code" ,
184
+ "collapsed" : false ,
185
+ "input" : [
186
+ " y[0]"
187
+ ],
188
+ "language" : " python" ,
189
+ "metadata" : {},
190
+ "outputs" : []
191
+ },
192
+ {
193
+ "cell_type" : " code" ,
194
+ "collapsed" : false ,
195
+ "input" : [
196
+ " from sklearn.externals import joblib\n " ,
197
+ " joblib.dump(clf, 'filename.pkl') "
198
+ ],
199
+ "language" : " python" ,
200
+ "metadata" : {},
201
+ "outputs" : []
202
+ }
203
+ ],
204
+ "metadata" : {}
205
+ }
206
+ ]
207
+ }
0 commit comments