-
Notifications
You must be signed in to change notification settings - Fork 0
/
qedBasics.tex
1231 lines (1006 loc) · 101 KB
/
qedBasics.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass{article}
\input{default_preamble}
%%%%%%%%%%%%%%%%%%%%%%%%% Additional Packages %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Used to get bibliogrpahy options that I want
\usepackage[comma,super,sort&compress]{natbib}
% Used to get handy macros for physics notes (like these!)
\usepackage{physics}
% Number equations by section (needs amsmath package)
\numberwithin{equation}{section}
%%%%%%%%%%%%%%%%%%%%%%%%%%% New Commands %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Used to place references in text
\newcommand{\citen}[1]{
\begingroup
\hspace{-18pt}
\setcitestyle{numbers} % cite style is no longer superscript
\cite{#1}
\hspace{-6.5pt}
\endgroup
}
\begin{document}
\title{Derivations of the Fields Operators in Free Space}
\author{Jacob A Busche}
\maketitle
\section{Solutions in Spherical Coordinates}
\subsection{Classical Solution}
We begin with proposed solutions to the Helmholtz equation for the electric field in the absence of sources (see Eq. [\ref{eq:waveEqFreq}]),
\begin{equation}\label{eq:waveEqE0}
\nabla\times\nabla\times\mathbf{E}(\mathbf{r},\omega) - \frac{\omega^2}{c^2}\mathbf{E}(\mathbf{r},\omega) = \bm{0}.
\end{equation}
The solution to Eq. \eqref{eq:waveEqE0} is
\begin{equation}
\mathbf{E}(\mathbf{r},\omega) = \mathrm{i}k\sum_{p = 0}^1\sum_{\ell = 1}^\infty\sum_{m = 0}^\ell\left[a_{p\ell m}(\omega)\mathbf{M}_{p\ell m}(\mathbf{r},k) + b_{p\ell m}(\omega)\mathbf{N}_{p\ell m}(\mathbf{r},k)\right],
\end{equation}
where $a_{p\ell m}(\omega)$ and $b_{p\ell m}(\omega)$ are complex coefficients with units of electric field times length times time (or electric potential times time) whose magnitudes and phases are free to vary and $k = \omega/c$. The details of the spherical vector harmonics $\mathbf{M}_{p\ell m}(\mathbf{r},k)$ and $\mathbf{N}_{p\ell m}(\mathbf{r},k)$ are given in Appendix \ref{sec:harmDef}, where it is clear that they are transverse vector fields. The longitudinal component of the electric field is zero identically, as can be seen from an expansion $\mathbf{E}(\mathbf{r},\omega) = \mathbf{E}_\parallel(\mathbf{r},\omega) + \mathbf{E}_\perp(\mathbf{r},\omega)$ within the wave function that, with the additional identity $\nabla\times\mathbf{E}_\parallel(\mathbf{r},\omega) = 0$, provides
\begin{equation}
\begin{split}
\nabla\times\nabla\times\mathbf{E}_\perp(\mathbf{r},\omega) - \frac{\omega^2}{c^2}\mathbf{E}_\perp(\mathbf{r},\omega) &= \bm{0},\\
-\frac{\omega^2}{c^2}\mathbf{E}_\parallel(\mathbf{r},\omega) &= \bm{0}.
\end{split}
\end{equation}
The only solution viable for all frequencies $\omega$ for the longitudinal field is then $\mathbf{E}_\parallel(\mathbf{r},\omega) = \bm{0}$ such that $\mathbf{E}(\mathbf{r},\omega) = \mathbf{E}_\perp(\mathbf{r},\omega)$.
In the Coulomb gauge, the longitudinal and transverse components of the electric field are described as derivatives of separate potentials. The vector potential $\mathbf{A}(\mathbf{r},\omega) = \mathbf{A}_\perp(\mathbf{r},\omega)$ is purely transverse such that $\mathbf{E}_\perp(\mathbf{r},\omega) = (\mathrm{i}\omega/c)\mathbf{A}(\mathbf{r},\omega)$. The ``longitudinal'' potential $\Phi(\mathbf{r},\omega)$ is actually a scalar such that $\mathbf{E}_\parallel(\mathbf{r},\omega) = -\nabla\Phi(\mathbf{r},\omega)$. Therefore, we have
\begin{equation}
\mathbf{A}(\mathbf{r},\omega) = \sum_{p = 0}^1\sum_{\ell = 1}^\infty\sum_{m = 0}^\ell\left[a_{p\ell m}(\omega)\mathbf{M}_{p\ell m}(\mathbf{r},k) + b_{p\ell m}(\omega)\mathbf{N}_{p\ell m}(\mathbf{r},k)\right].
\end{equation}
Given the transformation properties of the vector harmonics under frequency reversal, the reality condition $\mathbf{A}(\mathbf{r},-\omega) = \mathbf{A}^*(\mathbf{r},\omega)$ is satisfied only if
\begin{equation}
\begin{split}
a_{p\ell m}(-\omega) &= (-1)^\ell a_{p\ell m}^*(\omega),\\
b_{p\ell m}(-\omega) &= (-1)^{\ell + 1} b_{p\ell m}^*(\omega).\\
\end{split}
\end{equation}
Therefore, we can rewrite $\mathbf{A}(\mathbf{r},t)$ as
\begin{equation}
\begin{split}
\mathbf{A}(\mathbf{r},t) &= \int_{-\infty}^\infty\mathbf{A}(\mathbf{r},\omega)\mathrm{e}^{-\mathrm{i}\omega t}\;\frac{\mathrm{d}\omega}{2\pi}\\
&= \int_0^\infty\sum_{p\ell m}\left[a_{p\ell m}(\omega)\mathrm{e}^{-\mathrm{i}\omega t}\mathbf{M}_{p\ell m}(\mathbf{r},k) + a_{p\ell m}(-\omega)\mathrm{e}^{\mathrm{i}\omega t}\mathbf{M}_{p\ell m}(\mathbf{r},-k)\right.\\
&\hspace{0.1\textwidth}\left. + b_{p\ell m}(\omega)\mathrm{e}^{-\mathrm{i}\omega t}\mathbf{N}_{p\ell m}(\mathbf{r},k) + b_{p\ell m}(-\omega)\mathrm{e}^{\mathrm{i}\omega t}\mathbf{N}_{p\ell m}(\mathbf{r},-k)\right]\;\frac{\mathrm{d}\omega}{2\pi}\\
&= \int_0^\infty\sum_{Tp\ell m}\left[a_{Tp\ell m}(\omega)\mathrm{e}^{-\mathrm{i}\omega t} + a_{Tp\ell m}^*(\omega)\mathrm{e}^{\mathrm{i}\omega t}\right]\mathbf{X}_{Tp\ell m}(\mathbf{r},k)\;\frac{\mathrm{d}\omega}{2\pi},
\end{split}
\end{equation}
wherein we have defined the harmonics $\mathbf{X}(\mathbf{r},k)$ of subscript $T = M$ as the magnetic ($\mathbf{M}$) vector harmonics and those of subscript $E$ as the electric ($\mathbf{N}$). The coefficients have been similarly redefined for brevity such that $a_{Mp\ell m}(\omega) = a_{p\ell m}(\omega)$ and $a_{Ep\ell m}(\omega) = b_{p\ell m}(\omega)$.
From here, we will let $\bm{\alpha} = \{T,p,\ell,m\}$ be a collective index. The form for the magnetic field is then simple to write from $\mathbf{B}(\mathbf{r},t) = \nabla\times\mathbf{A}(\mathbf{r},t)$ as
\begin{equation}\label{eq:B1}
\mathbf{B}(\mathbf{r},t) = \int_0^\infty\sum_{\bm{\alpha}}\left[ka_{\bm{\alpha}}(\omega)\mathrm{e}^{-\mathrm{i}\omega t} + ka_{\bm{\alpha}}^*(\omega)\mathrm{e}^{\mathrm{i}\omega t}\right]\mathbf{Y}_{\bm{\alpha}}(\mathbf{r},k)\;\frac{\mathrm{d}\omega}{2\pi},
\end{equation}
with $\mathbf{Y}_{\bm{\alpha}}(\mathbf{r},k) = \nabla\times\mathbf{X}_{\bm{\alpha}}(\mathbf{r},k)/k$, and the electric field is similarly written as
\begin{equation}\label{eq:E1}
\mathbf{E}(\mathbf{r},t) = \int_0^\infty\sum_{\bm{\alpha}}\left[\mathrm{i}ka_{\bm{\alpha}}(\omega)\mathrm{e}^{-\mathrm{i}\omega t} - \mathrm{i}ka^*_{\bm{\alpha}}(\omega)\mathrm{e}^{\mathrm{i}\omega t}\right]\mathbf{X}_{\bm{\alpha}}(\mathbf{r},k)\;\frac{\mathrm{d}\omega}{2\pi}.
\end{equation}
These definitions allow for the simple definition of the Hamiltonian of the free fields,
\begin{equation}
H(t) = \frac{1}{8\pi}\int\left[\mathbf{E}(\mathbf{r},t)\cdot\mathbf{E}(\mathbf{r},t) + \mathbf{B}(\mathbf{r},t)\cdot\mathbf{B}(\mathbf{r},t)\right]\;\mathrm{d}^3\mathbf{r}.
\end{equation}
Explicitly, the orthogonality properties of the spherical vector harmonics in Eq. \eqref{eq:orthogonality} and the identity $\delta(k ' -k') = c\delta(\omega - \omega')$ lead us to
\begin{equation}
\begin{split}
\int\mathbf{E}(\mathbf{r},t)\cdot\mathbf{E}(\mathbf{r},t)\;\mathrm{d}^3\mathbf{r} &= \int_0^\infty\int_0^\infty\sum_{\bm{\alpha}\bm{\alpha}'}(-kk')\left[a_{\bm{\alpha}}(\omega)\mathrm{e}^{-\mathrm{i}\omega t} - a_{\bm{\alpha}}^*(\omega)\mathrm{e}^{\mathrm{i}\omega t}\right]\left[a_{\bm{\alpha}'}(\omega')\mathrm{e}^{-\mathrm{i}\omega' t} - a_{\bm{\alpha}'}^*(\omega')\mathrm{e}^{\mathrm{i}\omega' t}\right]\\
&\hspace{0.05\textwidth}\times\frac{2\pi^2}{k^2}\delta(k - k')\delta_{\bm{\alpha}\bm{\alpha}'}\;\frac{\mathrm{d}\omega}{2\pi}\,\frac{\mathrm{d}\omega'}{2\pi}\\
&= -\frac{c}{2}\int_0^\infty\sum_{\bm{\alpha}}\left[a_{\bm{\alpha}}(\omega)\mathrm{e}^{-\mathrm{i}\omega t} - a_{\bm{\alpha}}^*(\omega)\mathrm{e}^{\mathrm{i}\omega t}\right]^2\;\mathrm{d}\omega
\end{split}
\end{equation}
and
\begin{equation}
\begin{split}
\int\mathbf{B}(\mathbf{r},t)\cdot\mathbf{B}(\mathbf{r},t)\;\mathrm{d}^3\mathbf{r} &= \int_0^\infty\int_0^\infty\sum_{\bm{\alpha}\bm{\alpha}'}kk'\left[a_{\bm{\alpha}}(\omega)\mathrm{e}^{-\mathrm{i}\omega t} + a_{\bm{\alpha}}^*(\omega)\mathrm{e}^{\mathrm{i}\omega t}\right]\left[a_{\bm{\alpha}'}(\omega')\mathrm{e}^{-\mathrm{i}\omega' t} + a_{\bm{\alpha}'}^*(\omega')\mathrm{e}^{\mathrm{i}\omega' t}\right]\\
&\hspace{0.05\textwidth}\times\frac{2\pi^2}{k^2}\delta(k - k')\delta_{\bm{\alpha}\bm{\alpha}'}\;\frac{\mathrm{d}\omega}{2\pi}\,\frac{\mathrm{d}\omega'}{2\pi}\\
&= \frac{c}{2}\int_0^\infty\sum_{\bm{\alpha}}\left[a_{\bm{\alpha}}(\omega)\mathrm{e}^{-\mathrm{i}\omega t} + a_{\bm{\alpha}}^*(\omega)\mathrm{e}^{\mathrm{i}\omega t}\right]^2\;\mathrm{d}\omega.
\end{split}
\end{equation}
Thus, the (time-invariant) Hamiltonian becomes
\begin{equation}
\begin{split}
H &= \frac{c}{16\pi}\int_0^\infty\sum_{\bm{\alpha}}\left(\left[a_{\bm{\alpha}}(\omega)\mathrm{e}^{-\mathrm{i}\omega t} + a_{\bm{\alpha}}^*(\omega)\mathrm{e}^{\mathrm{i}\omega t}\right]^2 - \left[a_{\bm{\alpha}}(\omega)\mathrm{e}^{-\mathrm{i}\omega t} - a_{\bm{\alpha}}^*(\omega)\mathrm{e}^{\mathrm{i}\omega t}\right]^2\right)\;\mathrm{d}\omega\\
&= \frac{c}{4\pi}\int_0^\infty\sum_{\bm{\alpha}}\abs{a_{\bm{\alpha}}(\omega)\mathrm{e}^{-\mathrm{i}\omega t}}^2\;\mathrm{d}\omega.
\end{split}
\end{equation}
To shorten our notation, we will define the time-dependent oscillator functions $a_{\bm{\alpha}}(\omega,t) = a_{\bm{\alpha}}(\omega)\exp(-\mathrm{i}\omega t)$ such that $a_{\bm{\alpha}}(\omega,t) + a_{\bm{\alpha}}^*(\omega,t) = 2\mathrm{Re}\{a_{\bm{\alpha}}(\omega,t)\}$ and $a_{\bm{\alpha}}(\omega,t) - a_{\bm{\alpha}}^*(\omega,t) = 2\mathrm{i}\mathrm{Im}\{a_{\bm{\alpha}}(\omega,t)\}$. Further, it is useful to see that the functional derivatives of $H$ with respect to the real and imaginary parts of the oscillator functions give
\begin{equation}
\begin{split}
\frac{\delta H}{\delta \mathrm{Re}\{a_{\bm{\alpha}'}(\omega',t)\}} &= \frac{c}{2\pi}\mathrm{Re}\{a_{\bm{\alpha}'}(\omega',t)\} = -\frac{c}{2\pi\omega'}\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Im}\{a_{\bm{\alpha}'}(\omega',t)\},\\
\frac{\delta H}{\delta \mathrm{Im}\{a_{\bm{\alpha}'}(\omega',t)\}} &= \frac{c}{2\pi}\mathrm{Im}\{a_{\bm{\alpha}'}(\omega',t)\} = \frac{c}{2\pi\omega'}\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Re}\{a_{\bm{\alpha}'}(\omega',t)\},
\end{split}
\end{equation}
wherein we have used the identities
\begin{equation}
\begin{split}
\frac{\delta g[f(x)]}{\delta h(x)} &= \frac{\delta g[f(x)]}{\delta f(x)}\frac{\delta f(x)}{\delta h(x)},\\
\frac{\delta \mathrm{Re}\{a_{\bm{\alpha}}(\omega,t)\}}{\delta\mathrm{Im}\{a_{\bm{\alpha}'}(\omega',t)\}} &= \frac{\delta \mathrm{Im}\{a_{\bm{\alpha}}(\omega,t)\}}{\delta\mathrm{Re}\{a_{\bm{\alpha}'}(\omega',t)\}} = 0,\\
\frac{\delta \mathrm{Re}\{a_{\bm{\alpha}}(\omega,t)\}}{\delta\mathrm{Re}\{a_{\bm{\alpha}'}(\omega',t)\}} &= \frac{\delta \mathrm{Im}\{a_{\bm{\alpha}}(\omega,t)\}}{\delta\mathrm{Im}\{a_{\bm{\alpha}'}(\omega',t)\}} = \delta_{\bm{\alpha\alpha}'}\delta(\omega - \omega')
\end{split}
\end{equation}
that are central to variational derivative calculus. Thus, not only are the real and imaginary parts of the oscillator functions independent (as is implied above), they are Hamiltonian conjugate variables of each other up to a constant. More precisely, Hamiltonian mechanics defines two functions $q_k(\xi,t)$ and $p_k(\xi,t)$ of discrete index $k$ and continuous index $\xi$ as conjugate if and only if
\begin{equation}\label{eq:conjugateRules}
\begin{split}
\dot{q}_k(\chi,t) &= \frac{\delta H[q_1(\xi,t),\ldots,q_N(\xi,t),q_1(\xi',t),\ldots,q_N(\xi',t),\ldots;p_1(\xi,t),\ldots,p_N(\xi',t),\ldots]}{\delta p_k(\chi,t)},\\
\dot{p}_k(\chi,t) &= -\frac{\delta H[q_1(\xi,t),\ldots,q_N(\xi,t),q_1(\xi',t),\ldots,q_N(\xi',t),\ldots;p_1(\xi,t),\ldots,p_N(\xi',t),\ldots]}{\delta q_k(\chi,t)}
\end{split}
\end{equation}
are satisfied.
The truly conjugate variables of $H$ thus be defined as
\begin{equation}
\begin{split}
x_{\bm{\alpha}}(\omega,t) &= A\left[a_{\bm{\alpha}}(\omega)\mathrm{e}^{-\mathrm{i}\omega t} + a_{\bm{\alpha}}^*(\omega)\mathrm{e}^{\mathrm{i}\omega t}\right],\\
p_{\bm{\alpha}}(\omega,t) &= B\left[a_{\bm{\alpha}}(\omega)\mathrm{e}^{-\mathrm{i}\omega t} - a_{\bm{\alpha}}^*(\omega)\mathrm{e}^{\mathrm{i}\omega t}\right].
\end{split}
\end{equation}
Using Hamilton's equations above as well as the identities $\dot{x}_{\bm{\alpha}}(\omega,t) = (-\mathrm{i}\omega A/B)p_{\bm{\alpha}}(\omega,t)$ and $\dot{p}_{\bm{\alpha}}(\omega,t) = (-\mathrm{i}\omega B/A)x_{\bm{\alpha}}(\omega,t)$, the coefficients $A$ and $B$ are constrained such that $x_{\bm{\alpha}}(\omega,t)$ and $p_{\bm{\alpha}}(\omega,t)$ are conjugate if and only if
\begin{equation}
AB = -\frac{\mathrm{i}}{8\pi k}.
\end{equation}
In the interest of simplification, we can define the unknown coefficients as $A = 1/\sqrt{8\pi\hbar k^3}$ and $B = -\mathrm{i}\hbar k/\sqrt{8\pi\hbar k}$ such that
\begin{equation}\label{eq:xAndP1}
\begin{split}
x_{\bm{\alpha}}(\omega,t) &= \frac{1}{k\sqrt{8\pi}}\sqrt{\frac{1}{\hbar k}}\left[a_{\bm{\alpha}}(\omega)\mathrm{e}^{-\mathrm{i}\omega t} + a_{\bm{\alpha}}^*(\omega)\mathrm{e}^{\mathrm{i}\omega t}\right],\\
p_{\bm{\alpha}}(\omega,t) &= -\mathrm{i}\frac{\hbar k}{\sqrt{8\pi}}\sqrt{\frac{1}{\hbar k}}\left[a_{\bm{\alpha}}(\omega)\mathrm{e}^{-\mathrm{i}\omega t} - a_{\bm{\alpha}}^*(\omega)\mathrm{e}^{\mathrm{i}\omega t}\right]
\end{split}
\end{equation}
have units of position times square-root-time and momentum times squre-root-time, respectively. These strange dimensions do not interfere with the generation of sensible equations of motion for $x_{\bm{\alpha}}(\omega,t)$ and $p_{\bm{\alpha}}(\omega,t)$, as with the identities
\begin{equation}\label{eq:varDeriv1}
\begin{split}
\frac{\delta x_{\bm{\alpha}}(\omega,t)}{\delta x_{\bm{\alpha}'}(\omega',t)} &= \delta_{\bm{\alpha}\bm{\alpha}'}\delta(\omega - \omega'),\\
\frac{\delta p_{\bm{\alpha}}(\omega,t)}{\delta p_{\bm{\alpha}'}(\omega',t)} &= \delta_{\bm{\alpha}\bm{\alpha}'}\delta(\omega - \omega'),\\
\frac{\delta x_{\bm{\alpha}}(\omega,t)}{\delta p_{\bm{\alpha}'}(\omega',t)} &= 0,\\
\frac{\delta p_{\bm{\alpha}}(\omega,t)}{\delta x_{\bm{\alpha}'}(\omega',t)} &= 0,\\
\end{split}
\end{equation}
the variational derivative chain rule, and the canonicality condition of Eq. \eqref{eq:conjugateRules} one can find
\begin{equation}\label{eq:eqMot1}
\begin{split}
\dot{x}_{\bm{\alpha}}(\omega,t) &= \frac{\hbar\omega}{\hbar^2k^2}p_{\bm{\alpha}}(\omega,t),\\
\dot{p}_{\bm{\alpha}}(\omega,t) &= -\hbar\omega k^2x_{\bm{\alpha}}(\omega,t),
\end{split}
\end{equation}
or, after application of a second time derivative and substitution,
\begin{equation}\label{eq:eqMot2}
\begin{split}
\ddot{x}_{\bm{\alpha}}(\omega,t) &= -\omega^2x_{\bm{\alpha}}(\omega,t),\\
\ddot{p}_{\bm{\alpha}}(\omega,t) &= -\omega^2p_{\bm{\alpha}}(\omega,t).\\
\end{split}
\end{equation}
The unusual dimensions of the mode coordinates and momenta also become immediately sensible when we see that the Hamiltonian is
\begin{equation}\label{eq:H2}
H = \frac{1}{2}\int_0^{\infty}\sum_{\bm{\alpha}}\hbar\omega\left[\frac{p_{\bm{\alpha}}^2(\omega,t)}{\hbar^2k^2} + k^2x_{\bm{\alpha}}^2(\omega,t)\right]\;\mathrm{d}\omega.
\end{equation}
Due to the continuous nature of the $\omega$ index (or equivalently $k$), the dynamics of the modes $(\bm{\alpha},k)$ are determined by coordinate and momentum \textit{densities}, rather than coordinates and momenta in the usual sense. This abstraction is perhaps expected: one can quickly see from Eq. \eqref{eq:xAndP1} that
\begin{equation}
\begin{split}
\mathbf{B}(\mathbf{r},t) &= \int_0^\infty k^2\sqrt{2\hbar k}\sum_{\bm{\alpha}}x_{\bm{\alpha}}(\omega,t)\mathbf{Y}_{\bm{\alpha}}(\mathbf{r},k)\;\mathrm{d}\omega,\\
\mathbf{E}(\mathbf{r},t) &= -\frac{1}{\hbar}\int_0^\infty\sqrt{2\hbar k}\sum_{\bm{\alpha}}p_{\bm{\alpha}}(\omega,t)\mathbf{X}_{\bm{\alpha}}(\mathbf{r},k)\;\mathrm{d}\omega
\end{split}
\end{equation}
such that the mechanical quantities of the Hamiltonian are simply well-constrained amplitudes for the different modes of the electromagnetic field and are not comparable in an exact way to the dynamical position and momenta of massive objects.
\subsection{Quantization}
Quantization of Eq. \eqref{eq:H2} is straightforward using the Poisson bracket commutator, however it is convenient to first make a change of variables. It will turn out to be important that the mode coordinates have units of length and the mode conjugate momenta have units of mass times velocity, and we can make this happen by letting $\omega\to ck_c\kappa$ strategically within the definition of $H$. Here, $\kappa$ is a unitless index that can range from $0$ to $\infty$ and $k_c$ is a constant token wavenumber that can take any positive finite value. Therefore,
\begin{equation}
H = \frac{ck_c}{2}\int_0^\infty\sum_{\bm{\alpha}}\hbar\omega\left[\frac{p_{\bm{\alpha}}^2(ck_c\kappa,t)}{\hbar^2k^2} + k^2x_{\bm{\alpha}}^2(ck_c\kappa,t)\right]\mathrm{d}\kappa.
\end{equation}
To simplify, we can let
\begin{equation}
\sqrt{ck_c}a_{\bm{\alpha}}(\omega,t) = \sqrt{ck_c}a_{\bm{\alpha}}(ck_c\kappa)\mathrm{e}^{-\mathrm{i}ck_c\kappa t} \to a_{\bm{\alpha}}(\kappa,t) = a_{\bm{\alpha}}(\kappa)\mathrm{e}^{-\mathrm{i}ck_c\kappa t},
\end{equation}
i.e. we can rescale our oscillator functions $a_{\bm{\alpha}}(\omega)$ by a factor $\sqrt{ck_c}$ and reindex them with $\kappa$ rather than $\omega$. The reindexing is trivial and does not change the underlying frequency dependence of the functions, just the way that we write them. However, the rescaling gives them new units of $[\mathrm{electric\;potential}][\mathrm{time}]^{1/2}$. The mode coorindates and momenta now have the desired units if their relationships with the oscillator coordinates are
\begin{equation}
\begin{split}
x_{\bm{\alpha}}(\kappa,t) &= \frac{1}{k\sqrt{8\pi}}\sqrt{\frac{1}{\hbar k}}\left[a_{\bm{\alpha}}(\kappa,t) + a_{\bm{\alpha}}^*(\kappa,t)\right],\\
p_{\bm{\alpha}}(\kappa,t) &= -\mathrm{i}\frac{\hbar k}{\sqrt{8\pi}}\sqrt{\frac{1}{\hbar k}}\left[a_{\bm{\alpha}}(\kappa,t) - a_{\bm{\alpha}}^*(\kappa,t)\right],
\end{split}
\end{equation}
i.e. if we let $\sqrt{ck_c}x_{\bm{\alpha}}(\omega,t)\to x_{\bm{\alpha}}(\kappa,t)$ and $\sqrt{ck_c}p_{\bm{\alpha}}(\omega,t)\to p_{\bm{\alpha}}(\kappa,t)$. The new Hamiltonian in this case is
\begin{equation}
\begin{split}
H &= \frac{1}{2}\int_0^\infty\sum_{\bm{\alpha}}\hbar\omega\left[\frac{p_{\bm{\alpha}}^2(\kappa,t)}{\hbar^2k^2} + k^2x_{\bm{\alpha}}^2(\kappa,t)\right]\mathrm{d}\kappa\\
&= \frac{c}{16\pi}\int_0^\infty\sum_{\bm{\alpha}}\left(\left[a_{\bm{\alpha}}(\kappa,t) + a_{\bm{\alpha}}^*(\kappa,t)\right]^2 - \left[a_{\bm{\alpha}}(\kappa,t) - a_{\bm{\alpha}}^*(\kappa,t)\right]^2\right)\mathrm{d}\kappa.
\end{split}
\end{equation}
One can see that the transformation of the mode coordinates and momenta does not affect their equations of motion, as the multiplication of both sides of either Eq. \eqref{eq:eqMot1} or \eqref{eq:eqMot2} by $\sqrt{ck_c}$ produces no change in the time-evolution of $x_{\bm{\alpha}}(\omega,t)$ and $p_{\bm{\alpha}}(\omega,t)$ (or, equivalently, $x_{\bm{\alpha}}(\kappa,t)$ and $p_{\bm{\alpha}}(\kappa,t)$). Further, with the change of the variational derivatives involving the coordinates and momenta from those of Eq. \eqref{eq:varDeriv1} to
\begin{equation}
\begin{split}
\frac{\delta x_{\bm{\alpha}}(\kappa,t)}{\delta x_{\bm{\alpha}'}(\kappa',t)} &= \delta_{\bm{\alpha}\bm{\alpha}'}\delta(\kappa - \kappa'),\\
\frac{\delta p_{\bm{\alpha}}(\kappa,t)}{\delta p_{\bm{\alpha}'}(\kappa',t)} &= \delta_{\bm{\alpha}\bm{\alpha}'}\delta(\kappa - \kappa'),\\
\frac{\delta x_{\bm{\alpha}}(\kappa,t)}{\delta p_{\bm{\alpha}'}(\kappa',t)} &= 0,\\
\frac{\delta p_{\bm{\alpha}}(\kappa,t)}{\delta x_{\bm{\alpha}'}(\kappa',t)} &= 0,\\
\end{split}
\end{equation}
the canonicality condition of Eq. \eqref{eq:conjugateRules} is maintained between $x_{\bm{\alpha}}(\kappa,t)$ and $p_{\bm{\alpha}}(\kappa,t)$.
We can now resume our quantization process. The Poisson bracket commutators between the coordinates and momenta are given by
\begin{equation}
\begin{split}
\{x_{\bm{\alpha}}(\kappa,t),p_{\bm{\alpha}'}(\kappa',t)\} &= \int_{-\infty}^\infty\sum_{\bm{\beta}}\left[\frac{\delta x_{\bm{\alpha}}(\kappa,t)}{\delta x_{\bm{\beta}}(\eta,t)}\frac{\delta p_{\bm{\alpha}'}(\kappa',t)}{\delta p_{\bm{\beta}}(\eta,t)} - \frac{\delta x_{\bm{\alpha}}(\kappa,t)}{\delta p_{\bm{\beta}}(\eta,t)}\frac{\delta p_{\bm{\alpha}'}(\kappa',t)}{\delta x_{\bm{\beta}}(\eta,t)}\right]\mathrm{d}\eta\\
&= \int_{-\infty}^\infty\sum_{\bm{\beta}}\left[\delta_{\bm{\alpha}\bm{\beta}}\delta(\kappa - \eta)\delta_{\bm{\alpha}'\bm{\beta}}\delta(\kappa' - \eta) - 0\right]\mathrm{d}\eta\\
&= \delta_{\bm{\alpha}\bm{\alpha}'}\delta(\kappa - \kappa')
\end{split}
\end{equation}
and $\{p_{\bm{\alpha}'}(\kappa',t),x_{\bm{\alpha}}(\kappa,t)\} = -\delta_{\bm{\alpha}\bm{\alpha}'}\delta(\kappa - \kappa')$. These results deliver in a straightforward way the forms of the quantum operators that correspond to our classical functions. We simply let
\begin{equation}
\begin{split}
x_{\bm{\alpha}}(\kappa,t) &\to \hat{x}_{\bm{\alpha}}(\kappa,t)\\
p_{\bm{\alpha}}(\kappa,t) &\to \hat{p}_{\bm{\alpha}}(\kappa,t)\\
H[\ldots,x_{\bm{\alpha}}(\kappa,t),\ldots;\ldots,p_{\bm{\alpha}}(\kappa,t),\ldots] &\to \hat{H}[\ldots,\hat{x}_{\bm{\alpha}}(\kappa,t),\ldots;\ldots,\hat{p}_{\bm{\alpha}}(\kappa,t),\ldots],\\
\end{split}
\end{equation}
and
\begin{equation}\label{eq:xpCommutator}
\begin{split}
\{x_{\bm{\alpha}}(\kappa,t),p_{\bm{\alpha}}(\kappa',t)\} &\to [\hat{x}_{\bm{\alpha}}(\kappa,t),\hat{p}_{\bm{\alpha}'}(\kappa',t)] = \mathrm{i}\hbar\delta_{\bm{\alpha}\bm{\alpha}'}\delta(\kappa - \kappa'),\\
\{p_{\bm{\alpha}}(\kappa,t),x_{\bm{\alpha}}(\kappa',t)\} &\to [\hat{p}_{\bm{\alpha}}(\kappa,t),\hat{x}_{\bm{\alpha}'}(\kappa',t)] = -\mathrm{i}\hbar\delta_{\bm{\alpha}\bm{\alpha}'}\delta(\kappa - \kappa'),
\end{split}
\end{equation}
i.e. we let each observable quantity of the motion become an operator (labeled with a ``$\;\hat{}\;$'') that acts on the states of the Hilbert space spanned by the eigenvectors of $\hat{H}$. The Poisson bracket is then modified to become a commutator $[\hat{f},\hat{g}] = \hat{f}\hat{g} - \hat{g}\hat{f}$ whose output is identical to the classical commutator result modulo a factor of $\mathrm{i}\hbar$. Explicitly, the Hamiltonian becomes
\begin{equation}\label{eq:Hhat1}
\hat{H} = \frac{1}{2}\int_0^{\infty}\sum_{\bm{\alpha}}\hbar\omega\left[\frac{\hat{p}_{\bm{\alpha}}^2(\kappa,t)}{\hbar^2 k^2} + k^2\hat{x}^2_{\bm{\alpha}}(\kappa,t)\right]\;\mathrm{d}\kappa
\end{equation}
and is comprised of position and momentum operators $\hat{x}_{\bm{\alpha}}(\kappa,t)$ and $\hat{p}_{\bm{\alpha}}(\kappa,t)$ of the wave quanta of the electromagnetic field, photons.
It is useful at this point to return to the expression of the Hamiltonian in terms of the quantized versions of the oscillator functions $a_{\bm{\alpha}}(\kappa,t)$. In keeping with our current notation conventions, we will let these new oscillator operators be $\hat{a}_{\bm{\alpha}}(\kappa,t) = \hat{a}_{\bm{\alpha}}(\kappa)\exp(-\mathrm{i}\omega t)$. However, if we can, we would like these operators to be unitless. Moreover, it turns out to be convenient if the relationship between the coordinate/momentum operators and the oscillator operators is
\begin{equation}\label{eq:xAndP2}
\begin{split}
\hat{x}_{\bm{\alpha}}(\kappa,t) &= \frac{1}{k\sqrt{2}}\left[\hat{a}_{\bm{\alpha}}(\kappa,t) + \hat{a}_{\bm{\alpha}}^\dagger(\kappa,t)\right],\\
\hat{p}_{\bm{\alpha}}(\kappa,t) &= -\mathrm{i}\frac{\hbar k}{\sqrt{2}}\left[\hat{a}_{\bm{\alpha}}(\kappa,t) - \hat{a}_{\bm{\alpha}}^\dagger(\kappa,t)\right].
\end{split}
\end{equation}
This is achieved by quantizing $x_{\bm{\alpha}}(\kappa,t)$ and $p_{\bm{\alpha}}(\kappa,t)$ directly (by simply adding a ``$\;\hat{}\;$'') but rescaling $a_{\bm{\alpha}}(\kappa,t)$ before quantization such that $(1/\sqrt{4\pi\hbar k})a_{\bm{\alpha}}(\kappa,t)\to\hat{a}_{\bm{\alpha}}(\kappa,t)$. This transformation is independent of the canonical conjugation of the quantum coordinate and momentum operators and is thus allowable without violating any physical principles. The electric and magnetic field operators can now be rebuilt using the quantized position and momentum operators such that
\begin{equation}
\begin{split}
\hat{\mathbf{B}}(\mathbf{r},t) &= \int_0^\infty k^2\sqrt{2\hbar kk_cc}\sum_{\bm{\alpha}}\hat{x}_{\bm{\alpha}}(\kappa,t)\mathbf{Y}_{\bm{\alpha}}(\mathbf{r},k)\;\mathrm{d}\kappa,\\
&= \int_0^\infty k\sqrt{\hbar kk_cc}\sum_{\bm{\alpha}}\left[\hat{a}_{\bm{\alpha}}(\kappa,t) + \hat{a}_{\bm{\alpha}}^\dagger(\kappa,t)\right]\mathbf{Y}_{\bm{\alpha}}(\mathbf{r},k)\;\mathrm{d}\kappa,\\[0.5em]
\hat{\mathbf{E}}(\mathbf{r},t) &= -\frac{1}{\hbar}\int_0^\infty\sqrt{2\hbar kk_cc}\sum_{\bm{\alpha}}\hat{p}_{\bm{\alpha}}(\kappa,t)\mathbf{X}_{\bm{\alpha}}(\mathbf{r},k)\;\mathrm{d}\kappa\\
&= \mathrm{i}\int_0^\infty k\sqrt{\hbar kk_cc}\sum_{\bm{\alpha}}\left[\hat{a}_{\bm{\alpha}}(\kappa,t) - \hat{a}_{\bm{\alpha}}^\dagger(\kappa,t)\right]\mathbf{X}_{\bm{\alpha}}(\mathbf{r},k)\;\mathrm{d}\kappa.
\end{split}
\end{equation}
We now wish to take a closer look at the quantum properties of the oscillator operators. Rearranging, we find that
\begin{equation}
\begin{split}
\hat{a}_{\bm{\alpha}}(\kappa,t) &= \frac{k}{\sqrt{2}}\hat{x}_{\bm{\alpha}}(\kappa,t) + \frac{\mathrm{i}}{\hbar k\sqrt{2}}\hat{p}_{\bm{\alpha}}(\kappa,t),\\
\hat{a}_{\bm{\alpha}}^\dagger(\kappa,t) &= \frac{k}{\sqrt{2}}\hat{x}_{\bm{\alpha}}(\kappa,t) - \frac{\mathrm{i}}{\hbar k\sqrt{2}}\hat{p}_{\bm{\alpha}}(\kappa,t),\\
\end{split}
\end{equation}
a result which confirms the Hermiticity of the position and momentum operators, $\hat{x}_{\bm{\alpha}}^\dagger(\kappa,t) = \hat{x}_{\bm{\alpha}}(\kappa,t)$ and $\hat{p}_{\bm{\alpha}}^\dagger(\kappa,t) = \hat{p}_{\bm{\alpha}}(\kappa,t)$, that one expects from physical observables (the electric and magnetic fields whose amplitudes are determined by $\hat{x}_{\bm{\alpha}}(\kappa,t)$ and $\hat{p}_{\bm{\alpha}}(\kappa,t)$ must be real and observable). Further, with
\begin{equation}
\begin{split}
[\hat{x}_{\bm{\alpha}}(\kappa,t),\hat{x}_{\bm{\alpha}'}(\kappa',t)] &= 0,\\
[\hat{p}_{\bm{\alpha}}(\kappa,t),\hat{p}_{\bm{\alpha}'}(\kappa',t)] &= 0
\end{split}
\end{equation}
as follows from the quantization of the Poisson commutators for the classical mode coordinates and momenta, one can find with Eq. \eqref{eq:xpCommutator} that
\begin{equation}
\begin{split}
[\hat{a}_{\bm{\alpha}}(\kappa,t),\hat{a}_{\bm{\alpha}'}(\kappa',t)] &= 0,\\
[\hat{a}_{\bm{\alpha}}^\dagger(\kappa,t),\hat{a}_{\bm{\alpha}'}^\dagger(\kappa',t)] &= 0,\\
[\hat{a}_{\bm{\alpha}}(\kappa,t),\hat{a}_{\bm{\alpha}'}^\dagger(\kappa',t)] &= \delta_{\bm{\alpha}\bm{\alpha}'}\delta(\kappa - \kappa'),\\
[\hat{a}_{\bm{\alpha}}^\dagger(\kappa,t),\hat{a}_{\bm{\alpha}'}(\kappa',t)] &= -\delta_{\bm{\alpha}\bm{\alpha}'}\delta(\kappa - \kappa').
\end{split}
\end{equation}
(These nice commutation relations have been nicely set up by our previous decision to rescale the oscillator functions). Finally, we can expand the Hamiltonian into the oscillator operators, similarly to the expansion in the classical case. Explicitly,
\begin{equation}
\begin{split}
\hat{H} &= \frac{1}{2}\int_0^\infty\sum_{\bm{\alpha}}\hbar\omega\left[\frac{\hat{p}_{\bm{\alpha}}^2(\kappa,t)}{\hbar^2k^2} + k^2\hat{x}_{\bm{\alpha}}^2(\kappa,t)\right]\;\mathrm{d}\kappa\\
&= \frac{1}{2}\int_0^\infty\sum_{\bm{\alpha}}\left[-\frac{1}{2}\left(\hat{a}_{\bm{\alpha}}(\kappa,t)\hat{a}_{\bm{\alpha}}(\kappa,t) + \hat{a}_{\bm{\alpha}}^\dagger(\kappa,t)\hat{a}_{\bm{\alpha}}^\dagger(\kappa,t) - \hat{a}_{\bm{\alpha}}(\kappa,t)\hat{a}_{\bm{\alpha}}^\dagger(\kappa,t) - \hat{a}_{\bm{\alpha}}^\dagger(\kappa,t)\hat{a}_{\bm{\alpha}}(\kappa,t)\right)\right.\\
&\left.\hspace{0.05\textwidth}+\frac{1}{2}\left(\hat{a}_{\bm{\alpha}}(\kappa,t)\hat{a}_{\bm{\alpha}}(\kappa,t) + \hat{a}_{\bm{\alpha}}^\dagger(\kappa,t)\hat{a}_{\bm{\alpha}}^\dagger(\kappa,t) + \hat{a}_{\bm{\alpha}}(\kappa,t)\hat{a}_{\bm{\alpha}}^\dagger(\kappa,t) + \hat{a}_{\bm{\alpha}}^\dagger(\kappa,t)\hat{a}_{\bm{\alpha}}(\kappa,t)\right)\right]\;\mathrm{d}\kappa\\
&= \frac{1}{2}\int_0^\infty\sum_{\bm{\alpha}}\hbar\omega\left[\hat{a}_{\bm{\alpha}}(\kappa,t)\hat{a}_{\bm{\alpha}}^\dagger(\kappa,t) + \hat{a}_{\bm{\alpha}}^\dagger(\kappa,t)\hat{a}_{\bm{\alpha}}(\kappa,t)\right]\;\mathrm{d}\kappa.
\end{split}
\end{equation}
\subsection{Time-dependence}
We are now in a position to interrogate the time-dependence of our operators. This is determined by the Heisenberg equation,
\begin{equation}
\frac{\partial \hat{f}_{\bm{\alpha}}(\kappa,t)}{\partial t} = -\frac{\mathrm{i}}{\hbar}\left[\hat{f}_{\bm{\alpha}}(\kappa,t),\hat{H}\right],
\end{equation}
where $\hat{f}_{\bm{\alpha}}(\kappa,t)$ takes the place of either a coordinate or momentum operator. Using the commutation relations
\begin{equation}
\begin{split}
\left[\hat{x}_{\bm{\alpha}}(\kappa,t),\hat{x}^2_{\bm{\alpha}'}(\kappa',t)\right] &= 0,\\
\left[\hat{p}_{\bm{\alpha}}(\kappa,t),\hat{p}^2_{\bm{\alpha}'}(\kappa',t)\right] &= 0,\\
\left[\hat{x}_{\bm{\alpha}}(\kappa,t),\hat{p}^2_{\bm{\alpha}'}(\kappa',t)\right] &= 2\mathrm{i}\hbar\delta_{\bm{\alpha},\bm{\alpha}'}\delta(\kappa - \kappa')\hat{p}_{\bm{\alpha}'}(\kappa',t),\\
\left[\hat{p}_{\bm{\alpha}}(\kappa,t),\hat{x}^2_{\bm{\alpha}'}(\kappa',t)\right] &= -2\mathrm{i}\hbar\delta_{\bm{\alpha},\bm{\alpha}'}\delta(\kappa - \kappa')\hat{x}_{\bm{\alpha}'}(\kappa',t),
\end{split}
\end{equation}
one finds that
\begin{equation}
\begin{split}
\left[\hat{x}_{\bm{\alpha}}(\kappa,t),\hat{H}\right] &= \frac{1}{2}\int_0^\infty\sum_{\bm{\alpha}'}\hbar\omega'\left(\frac{\left[\hat{x}_{\bm{\alpha}}(\kappa,t),\hat{p}_{\bm{\alpha}'}^2(\kappa',t)\right]}{\hbar^2k'^2} + k'^2\left[\hat{x}_{\bm{\alpha}}(\kappa,t),\hat{x}_{\bm{\alpha}'}^2(\kappa',t)\right]\right)\;\mathrm{d}\kappa'\\
&= \frac{i\omega}{k^2}\hat{p}_{\bm{\alpha}}(\kappa,t)
\end{split}
\end{equation}
and
\begin{equation}
\left[\hat{p}_{\bm{\alpha}}(\kappa,t),\hat{H}\right] = -\mathrm{i}\hbar^2\omega k^2\hat{x}_{\bm{\alpha}}(\kappa,t).
\end{equation}
Therefore,
\begin{equation}
\begin{split}
\dot{\hat{x}}_{\bm{\alpha}}(\kappa,t) &= \frac{\hbar\omega}{\hbar^2k^2}\hat{p}_{\bm{\alpha}}(\kappa,t),\\
\dot{\hat{p}}_{\bm{\alpha}}(\kappa,t) &= -\hbar\omega k^2\hat{x}_{\bm{\alpha}}(\kappa,t).
\end{split}
\end{equation}
Taking the time-derivatives of the above relations and substituting appropriately gives
\begin{equation}
\begin{split}
\ddot{\hat{x}}_{\bm{\alpha}}(\kappa,t) = -\omega^2\hat{x}_{\bm{\alpha}}(\kappa,t),\\
\ddot{\hat{p}}_{\bm{\alpha}}(\kappa,t) = -\omega^2\hat{p}_{\bm{\alpha}}(\kappa,t),
\end{split}
\end{equation}
such that
\begin{equation}
\begin{split}
\hat{x}_{\bm{\alpha}}(\kappa,t) &= \hat{A}_{x_{\bm{\alpha}}}(\kappa)\cos(\omega t) + \hat{B}_{x_{\bm{\alpha}}}(\kappa)\sin(\omega t),\\
\hat{p}_{\bm{\alpha}}(\kappa,t) &= \hat{A}_{p_{\bm{\alpha}}}(\kappa)\cos(\omega t) + \hat{B}_{p_{\bm{\alpha}}}(\kappa)\sin(\omega t).\\
\end{split}
\end{equation}
Note that these equations of motion are precisely the same as those found through the classical version of this theory in Eq. \eqref{eq:eqMot2}. A simple analysis of the behavior of either operator and its derivative at $t = 0$ quickly fixes the unkown prefactors as $\hat{A}_{x_{\bm{\alpha}}}(\kappa) = \hat{x}_{\bm{\alpha}}(\kappa)$, $\hat{B}_{x_{\bm{\alpha}}}(\kappa) = (1/\hbar k^2)\hat{p}_{\bm{\alpha}}(\kappa)$, $\hat{A}_{p_{\bm{\alpha}}}(\kappa) = \hat{p}_{\bm{\alpha}}(\kappa)$, and $\hat{B}_{p_{\bm{\alpha}}}(\kappa) = -\hbar k^2\hat{x}_{\bm{\alpha}}(\kappa)$. Thus,
\begin{equation}
\begin{split}
\hat{x}_{\bm{\alpha}}(\kappa,t) &= \hat{x}_{\bm{\alpha}}(\kappa)\cos(\omega t) + \frac{1}{\hbar k^2}\hat{p}_{\bm{\alpha}}(\kappa)\sin(\omega t),\\
\hat{p}_{\bm{\alpha}}(\kappa,t) &= \hat{p}_{\bm{\alpha}}(\kappa)\cos(\omega t) - \hbar k^2\hat{x}_{\bm{\alpha}}(\kappa)\sin(\omega t).\\
\end{split}
\end{equation}
The particular forms of the time-dependent coordinate and momentum operators produces
\begin{equation}
\frac{\hat{p}_{\bm{\alpha}}^2(\kappa,t)}{\hbar^2k^2} + k^2\hat{x}_{\bm{\alpha}}^2(\kappa,t) = \frac{\hat{p}_{\bm{\alpha}}^2(\kappa)}{\hbar^2k^2} + k^2\hat{x}_{\bm{\alpha}}^2(\kappa),
\end{equation}
as can be seen through simple substitution and the identity $\cos^2(\omega t) + \sin^2(\omega t) = 1$. Therefore, our time-independent Hamiltonian can indeed be simply written in terms of the time-independent (or $t = 0$) coordinate and momentum operators:
\begin{equation}\label{eq:Hhat3}
\hat{H} = \frac{1}{2}\int_0^{\infty}\sum_{\bm{\alpha}}\hbar\omega\left[\frac{\hat{p}_{\bm{\alpha}}^2(\kappa)}{\hbar^2 k^2} + k^2\hat{x}^2_{\bm{\alpha}}(\kappa)\right]\mathrm{d}\kappa.
\end{equation}
This result agrees well with the time-independent form of the Hamiltonian as written in terms of ladder operators. Explicitly, the time-dependent factors of $\hat{a}_{\bm{\alpha}}(\kappa,t)$ and $\hat{a}_{\bm{\alpha}}^\dagger(\kappa,t)$ are inverses and cancel immediately upon multiplication, such that
\begin{equation}\label{eq:Hhat4}
\hat{H} = \frac{1}{2}\int_0^\infty\sum_{\bm{\alpha}}\hbar\omega\left[\hat{a}_{\bm{\alpha}}(\kappa)\hat{a}_{\bm{\alpha}}^\dagger(\kappa) + \hat{a}_{\bm{\alpha}}^\dagger(\kappa)\hat{a}_{\bm{\alpha}}(\kappa)\right]\;\mathrm{d}\kappa.
\end{equation}
is clear by inspection.
\subsection{Quantized Basis: State Normalization and the Quantization Volume}
To put our new Hamiltonian to work, we must first define the basis of eigenstates with which one can simply describe any physical state that $\hat{H}$ acts upon. However, doing so is not so straightforward. For example, if we restrict ourselves to treating a single mode $(\bm{\alpha},\kappa)$ of $\hat{H}$, we can propose that there exists a Hilbert space spanned by the vector $\ket{q}$ upon which we can project the position and momentum operators. We'll let
\begin{equation}
\begin{split}
\mel{q}{\hat{x}_{\bm{\alpha}}(\kappa)}{q'} &= f(q,q'),\\
\mel{q}{\hat{p}_{\bm{\alpha}}(\kappa)}{q'} &= g(q,q')
\end{split}
\end{equation}
where $q'$ may or not be equal to $q$ but both $\ket{q}$ and $\ket{q'}$ exist in the same Hilbert space. Further, we'll assume that $q$ can take any value along a continuum such that the $q$-states are normalized according to $\braket{q}{q'} = \delta(q - q')$ and $\hat{\bm{1}} = \int\dyad{q}{q}\;\mathrm{d}q$ (to check, use $\hat{\bm{1}}\ket{q'} = \ket{q'}$ and expand the identity operator). Therefore,
\begin{equation}
\begin{split}
\mel{q}{\hat{x}_{\bm{\alpha}}(\kappa)\hat{p}_{\bm{\alpha}}(\kappa)}{q'} &= \int \mel{q}{\hat{x}_{\bm{\alpha}}(\kappa)}{q''}\mel{q''}{\hat{p}_{\bm{\alpha}}(\kappa)}{q'}\;\mathrm{d}q''\\
&= \int f(q,q'')g(q'',q')\;\mathrm{d}q''.
\end{split}
\end{equation}
Similarly, $\mel{q}{\hat{x}_{\bm{\alpha}}(\kappa)\hat{p}_{\bm{\alpha}}(\kappa)}{q'} = \int g(q,q'')f(q'',q')\;\mathrm{d}q''$ such that
\begin{equation}
\mel{q}{\left[\hat{x}_{\bm{\alpha}}(\kappa),\hat{p}_{\bm{\alpha}}(\kappa)\right]}{q'} = \int \left[f(q,q'')g(q'',q') - g(q,q'')f(q'',q')\right]\;\mathrm{d}q''.
\end{equation}
However, we can also see directly that
\begin{equation}
\mel{q}{\left[\hat{x}_{\bm{\alpha}}(\kappa),\hat{p}_{\bm{\alpha}}(\kappa)\right]}{q'} = \mathrm{i}\hbar\delta(0)\delta(q - q').
\end{equation}
Therefore, whatever forms $f(q,q')$ and $g(q,q')$ take, a factor of the size $\delta(0)$ (or its square root or something similar) must be included in their definition or produced through the action of the integral over $q''$. In order to avoid dealing with this type of infinity, we can move to a simpler notation that provides a more intuitive picture of the eigenstates of $\hat{H}$.
To begin, we can see that the cause of the appearance of $\delta(0)$ in the matrix element above is the use of a continuous radial wavenumber $k$. This, in turn, requires that the commutator between the position and momentum operators is proportional to a Dirac delta rather than a Kronecker delta. A continuous wavenumber is the product of the assumption that the universe is infinite in extent such that, to replace our commutator factor $\delta(k - k')$ with $\delta_{kk'}$, the universe must be assumed to be finite but very very large. To see that this is true, we can look to the orthogonality relation between the transverse vector spherical harmonics $\mathbf{X}_{\bm{\alpha}}(\mathbf{r},k)$ in Eq. \eqref{eq:orthogonality}. If the radial integral is taken out to a very large radius $L$ rather than infinity, we can replace the expression with the approximate equality
\begin{equation}\label{eq:boxOrthogonality}
\int_0^L\int_0^\pi\int_0^{2\pi}\mathbf{X}_{\bm{\alpha}}(\mathbf{r},k)\cdot\mathbf{X}_{\bm{\alpha}'}(\mathbf{r},k')r^2\sin\theta\;\mathrm{d}r\,\mathrm{d}\theta\,\mathrm{d}\phi = \frac{2\pi^2}{k^2}L\delta_{kk'}\delta_{\bm{\alpha}\bm{\alpha}'}.
\end{equation}
Clearly, for $k\neq k'$, this new orthogonality condition produces zero. For $k = k'$, it produces an effectively infinite number when $L$ is much, much (much, much) larger than the size of the a system we care about such that $L\delta_{kk'}$ produces a good approximation to the Dirac delta. However, the presence of the \textit{Kronecker} delta $\delta_{kk'}$ implies that the corresponding completeness relation to Eq. \eqref{eq:boxOrthogonality} must contain a sum over $k$-modes, rather than an integral. This is important because in an integral (continuous) formulation the amount of energy contained in a mode of wavenumber $k$ is exactly zero---one can only ask about the amount of energy contained in modes with wavenumbers between $k$ and, at minimum, $k + \mathrm{d}k$.
Explicitly, we have in our new notation
\begin{equation}\label{eq:boxCompleteness}
\begin{split}
\bm{1}_2\delta(\mathbf{r}- \mathbf{r}') &= \frac{1}{2\pi^2L}\sum_{k = -\infty}^\infty\sum_{\bm{\alpha}}k^2\mathbf{X}_{\bm{\alpha}}(\mathbf{r},k)\mathbf{X}_{\bm{\alpha}}(\mathbf{r}',k)\\
&+ \frac{1}{4\pi}\sum_{p\ell m}\left[\nabla f_{p\ell m}^>(\mathbf{r})\nabla'f_{p\ell m}^<(\mathbf{r}')\Theta(r - r') + \nabla f_{p\ell m}^<(\mathbf{r})\nabla'f_{p\ell m}^>(\mathbf{r}')\Theta(r' - r)\right].
\end{split}
\end{equation}
The second term is longitudinal such that its integral with a transverse field over the whole universe is zero or approximately zero. Therefore,
\begin{equation}
\begin{split}
\int_V\bm{1}_2\delta(\mathbf{r} - \mathbf{r}')\cdot\mathbf{X}_{\bm{\alpha}'}(\mathbf{r}',k')\;\mathrm{d}^3\mathbf{r}' &= \frac{1}{2\pi^2}\sum_{k\bm{\alpha}}k^2\mathbf{X}_{\bm{\alpha}}(\mathbf{r},k)\int_V\mathbf{X}_{\bm{\alpha}}(\mathbf{r}',k)\cdot\mathbf{X}_{\bm{\alpha}'}(\mathbf{r}',k')\;\mathrm{d}^3\mathbf{r}'\\
&= \frac{1}{2\pi^2L}\sum_{k\bm{\alpha}}\mathbf{X}_{\bm{\alpha}}(\mathbf{r},k)\frac{2\pi^2}{k^2}L\delta_{kk'}\delta_{\bm{\alpha}\bm{\alpha}'}\\
&= \mathbf{X}_{\bm{\alpha}'}(\mathbf{r},k'),
\end{split}
\end{equation}
such that the orthogonality condition reproduces the necessary projection identity operation $\int_V\bm{1}_2\delta(\mathbf{r} - \mathbf{r}')\cdot\mathbf{X}_{\bm{\alpha}'}(\mathbf{r}',k')\;\mathrm{d}^3\mathbf{r}' = \mathbf{X}_{\bm{\alpha}'}(\mathbf{r},k')$. Here we have let $\int_V\mathrm{d}^3\mathbf{r} = \int_0^L\int_0^\pi\int_0^{2\pi}r^2\sin\theta\;\mathrm{d}r\,\mathrm{d}\theta\,\mathrm{d}\phi$ imply integration over the finite universe. Using these identities and the replacement $\int c\mathrm{d}k\to\sum_{\kappa}c/L$, we can rewrite the electric and magnetic fields from Eqs. \eqref{eq:B1} and \eqref{eq:E1} as
\begin{equation}
\begin{split}
\mathbf{E}(\mathbf{r},t) &= \sum_{\kappa\bm{\alpha}}\frac{c}{2\pi L}\mathrm{i}k\left[a_{\kappa\bm{\alpha}}\mathrm{e}^{-\mathrm{i}\omega t} - a_{\kappa\bm{\alpha}}^*\mathrm{e}^{\mathrm{i}\omega t}\right]\mathbf{X}_{\bm{\alpha}}(\mathbf{r},k),\\
\mathbf{B}(\mathbf{r},t) &= \sum_{\kappa\bm{\alpha}}\frac{c}{2\pi L}k\left[a_{\kappa\bm{\alpha}}\mathrm{e}^{-\mathrm{i}\omega t} + a_{\kappa\bm{\alpha}}^*\mathrm{e}^{\mathrm{i}\omega t}\right]\mathbf{Y}_{\bm{\alpha}}(\mathbf{r},k),
\end{split}
\end{equation}
where we have replaced the notation $a_{\bm{\alpha}}(\omega)$ with $a_{\kappa\bm{\alpha}}$ to make clear that $\kappa = k/k_c$ is now a discrete index. Further, we can make the replacement $a_{\kappa\bm{\alpha}}\to a_{\kappa\bm{\alpha}}/\sqrt{ck_c}$ to change the units of the oscillator functions as well as maintain the same relationships between the oscillator functions and dynamical variables as before (see Eq. [\ref{eq:xAndP1}]) such that
\begin{equation}
\begin{split}
\mathbf{E}(\mathbf{r},t) &\to \sum_{\kappa\bm{\alpha}}\frac{\mathrm{i}\omega}{2\pi L\sqrt{ck_c}}\left[a_{\kappa\bm{\alpha}}\mathrm{e}^{-\mathrm{i}\omega t} - a_{\kappa\bm{\alpha}}^*\mathrm{e}^{\mathrm{i}\omega t}\right]\mathbf{X}_{\bm{\alpha}}(\mathbf{r},k)\\
&= -\sqrt{2}\frac{\omega}{L\sqrt{\pi k_c\hbar\omega}}p_{\kappa\bm{\alpha}}(t)\mathbf{X}_{\bm{\alpha}}(\mathbf{r},k),\\[0.5em]
\mathbf{B}(\mathbf{r},t) &\to \sum_{\kappa\bm{\alpha}}\frac{\omega}{2\pi L\sqrt{ck_c}}\left[a_{\kappa\bm{\alpha}}\mathrm{e}^{-\mathrm{i}\omega t} + a_{\kappa\bm{\alpha}}^*\mathrm{e}^{\mathrm{i}\omega t}\right]\mathbf{Y}_{\bm{\alpha}}(\mathbf{r},k)\\
&= \sqrt{2}\frac{\omega k}{L}\sqrt{\frac{\hbar k}{\pi k_cc}}x_{\kappa\bm{\alpha}}(t)\mathbf{Y}_{\bm{\alpha}}(\mathbf{r},k),
\end{split}
\end{equation}
and the electric and magnetic contributions to the electromagnetic field energy become
\begin{equation}
\begin{split}
\int_V\mathbf{E}(\mathbf{r},t)\cdot\mathbf{E}(\mathbf{r},t)\;\mathrm{d}^3\mathbf{r} &= \sum_{\kappa\bm{\alpha}}\frac{4\pi\hbar \omega}{k_cL}\frac{p^2_{\kappa\bm{\alpha}}(t)}{\hbar^2k^2},\\
\int_V\mathbf{B}(\mathbf{r},t)\cdot\mathbf{B}(\mathbf{r},t)\;\mathrm{d}^3\mathbf{r} &= \sum_{\kappa\bm{\alpha}}\frac{4\pi\hbar \omega}{k_cL}k^2x^2_{\kappa\bm{\alpha}}(t).
\end{split}
\end{equation}
The classical Hamiltonian is thus
\begin{equation}
H = \sum_{\kappa\bm{\alpha}}\frac{\hbar\omega}{2k_cL}\left[k^2x_{\kappa\bm{\alpha}}^2(t) + \frac{p_{\kappa\bm{\alpha}}^2(t)}{\hbar^2k^2}\right].
\end{equation}
Quantization can be performed straightforwardly with $x_{\kappa\bm{\alpha}}\to\hat{x}_{\kappa\bm{\alpha}}$ and $p_{\kappa\bm{\alpha}}\to\hat{p}_{\kappa\bm{\alpha}}$. The quantization of the oscillator functions becomes more convenient when using the transformation $a_{\kappa\bm{\alpha}}/\sqrt{4\pi\hbar k}\to\sqrt{k_cL}\hat{a}_{\kappa\bm{\alpha}}$ such that
\begin{equation}\label{eq:xAndP3}
\begin{split}
\hat{x}_{\kappa\bm{\alpha}}(t) &= \frac{\sqrt{k_cL}}{k\sqrt{2}}\left[\hat{a}_{\kappa\bm{\alpha}}(t) + \hat{a}_{\kappa\bm{\alpha}}^\dagger(t)\right],\\
\hat{p}_{\kappa\bm{\alpha}}(t) &= -\mathrm{i}\frac{\hbar k\sqrt{k_cL}}{\sqrt{2}}\left[\hat{a}_{\kappa\bm{\alpha}}(t) - \hat{a}_{\kappa\bm{\alpha}}^\dagger(t)\right]\\
\end{split}
\end{equation}
with $\hat{a}_{\kappa\bm{\alpha}}(t) = \hat{a}_{\kappa\bm{\alpha}}\exp(-\mathrm{i}\omega t)$ and
\begin{equation}
\begin{split}
\hat{\mathbf{E}}(\mathbf{r},t) &= \sum_{\kappa\bm{\alpha}}\mathrm{i}k\sqrt{\frac{\hbar\omega}{\pi L}}\left[\hat{a}_{\kappa\bm{\alpha}}(t) - \hat{a}^\dagger_{\kappa\bm{\alpha}}(t)\right]\mathbf{X}_{\bm{\alpha}}(\mathbf{r},k),\\
\hat{\mathbf{B}}(\mathbf{r},t) &= \sum_{\kappa\bm{\alpha}}k\sqrt{\frac{\hbar\omega}{\pi L}}\left[\hat{a}_{\kappa\bm{\alpha}}(t) + \hat{a}^\dagger_{\kappa\bm{\alpha}}(t)\right]\mathbf{Y}_{\bm{\alpha}}(\mathbf{r},k).
\end{split}
\end{equation}
The quantum Hamiltonian is therefore
\begin{equation}
\begin{split}
\hat{H} &= \sum_{\kappa\bm{\alpha}}\frac{\hbar\omega}{2k_cL}\left[k^2\hat{x}_{\kappa\bm{\alpha}}^2(t) + \frac{\hat{p}_{\kappa\bm{\alpha}}^2(t)}{\hbar^2k^2}\right]\\
&= \frac{1}{2}\sum_{\kappa\bm{\alpha}}\hbar\omega\left[\hat{a}_{\kappa\bm{\alpha}}\hat{a}^\dagger_{\kappa\bm{\alpha}} + \hat{a}^\dagger_{\kappa\bm{\alpha}}\hat{a}_{\kappa\bm{\alpha}}\right].
\end{split}
\end{equation}
Note that, in the second line, the time-dependent factors of the oscillator operators $\exp(\mp\mathrm{i}\omega t)$ cancel trivially. This Hamiltonian appears very similar to that of Eq. \eqref{eq:Hhat4} except for the replacement of an integral over $\kappa$ with a sum. However, the commutation relations are very different in the two pictures. The discretized classical Hamiltonian implies that the position and momentum operators obey the (Poisson) commutation relations
\begin{equation}
\begin{split}
\left\{x_{\kappa\bm{\alpha}}(t),p_{\kappa'\bm{\alpha}'}(t)\right\} &= \delta_{\bm{\alpha}\bm{\alpha}'}\delta_{\kappa\kappa'},\\
\left\{p_{\kappa\bm{\alpha}}(t),x_{\kappa'\bm{\alpha}'}(t)\right\} &= -\delta_{\bm{\alpha}\bm{\alpha}'}\delta_{\kappa\kappa'},\\
\left\{x_{\kappa\bm{\alpha}}(t),x_{\kappa'\bm{\alpha}'}(t)\right\} &= 0,\\
\left\{p_{\kappa\bm{\alpha}}(t),p_{\kappa'\bm{\alpha}'}(t)\right\} &= 0,
\end{split}
\end{equation}
such that the quantum commutation relations are
\begin{equation}
\begin{split}
\left[\hat{x}_{\kappa\bm{\alpha}}(t),\hat{p}_{\kappa'\bm{\alpha}'}(t)\right] &= \mathrm{i}\hbar\delta_{\bm{\alpha}\bm{\alpha}'}\delta_{\kappa\kappa'},\\
\left[\hat{p}_{\kappa\bm{\alpha}}(t),\hat{x}_{\kappa'\bm{\alpha}'}(t)\right] &= -\mathrm{i}\hbar\delta_{\bm{\alpha}\bm{\alpha}'}\delta_{\kappa\kappa'},\\
\left[\hat{x}_{\kappa\bm{\alpha}}(t),\hat{x}_{\kappa'\bm{\alpha}'}(t)\right] &= 0,\\
\left[\hat{p}_{\kappa\bm{\alpha}}(t),\hat{p}_{\kappa'\bm{\alpha}'}(t)\right] &= 0,
\end{split}
\end{equation}
and
\begin{equation}
\begin{split}
\left[\hat{a}_{\kappa\bm{\alpha}}(t),\hat{a}_{\kappa'\bm{\alpha}'}^\dagger(t)\right] &= \delta_{\bm{\alpha}\bm{\alpha}'}\delta_{\kappa\kappa'},\\
\left[\hat{a}_{\kappa\bm{\alpha}}^\dagger(t),\hat{a}_{\kappa'\bm{\alpha}'}(t)\right] &= -\delta_{\bm{\alpha}\bm{\alpha}'}\delta_{\kappa\kappa'},\\
\left[\hat{a}_{\kappa\bm{\alpha}}(t),\hat{a}_{\kappa'\bm{\alpha}'}(t)\right] &= 0,\\
\left[\hat{a}_{\kappa\bm{\alpha}}^\dagger(t),\hat{a}_{\kappa'\bm{\alpha}'}^\dagger(t)\right] &= 0.
\end{split}
\end{equation}
The trouble with factors of $\delta(0)$ showing up in our math has thus been completely eliminated (at the cost of introducing $L$)!
\subsection{Quantized Basis - Coordinate Representation}
To put our new Hamiltonian to work, we must first define the basis of eigenstates with which one can most simply describe any physical state that $\hat{H}$ acts upon. To find this set of eigenstates, it is generally preferable to represent the Hamiltonian in the coordinate basis, i.e. within a mathematical representation that describes the excitation of a mode $(\bm{\alpha},\kappa)$ of the electric field as the displacement of an oscillator in a one-dimensional coordinate space $x_{\kappa\bm{\alpha}}$, where $-\infty<x_{\kappa\bm{\alpha}}<\infty$. Each mode can be displaced independently in its own coordinate space, such that the Hilbert space of all possible displacements is spanned by the vector (ket):
\begin{equation}
\begin{split}
\ket{X} &= \cdots\ket{x_{\kappa\bm{\alpha}}}\ket{x_{\kappa\bm{\alpha}'}}\cdots\ket{x_{\kappa'\bm{\alpha}}}\cdots\\
&= \prod_{\bm{\alpha},\kappa}\ket{x_{\kappa\bm{\alpha}}}.
\end{split}
\end{equation}
These kets are normalized such that
\begin{equation}
\begin{split}
\braket{X'}{X} &= \cdots\braket{x'_{\kappa\bm{\alpha}}}{x_{\kappa\bm{\alpha}}}\braket{x'_{\kappa\bm{\alpha}'}}{x_{\kappa\bm{\alpha}'}}\cdots\braket{x'_{\kappa'\bm{\alpha}}}{x_{\kappa'\bm{\alpha}}}\cdots\\
&=\prod_{\bm{\alpha},\kappa}\delta(x_{\kappa\bm{\alpha}} - x'_{\kappa\bm{\alpha}})\\
\implies \int\cdots\int&\braket{X'}{X}\;\cdots\mathrm{d}x_{\kappa\bm{\alpha}}\cdots = 1.
\end{split}
\end{equation}
With these identities, we can assert that the states $\ket{x_{\kappa\bm{\alpha}}}$ are eigenstates of the coordinate operators $\hat{x}_{\kappa\bm{\alpha}}$ such that
\begin{equation}
\hat{x}_{\kappa\bm{\alpha}}\ket{X} = x_{\kappa\bm{\alpha}}\ket{X}
\end{equation}
and
\begin{equation}
\hat{x}_{\kappa\bm{\alpha}} = \int\cdots\int x_{\kappa\bm{\alpha}}\dyad{X}{X}\;\cdots\mathrm{d}x_{\kappa\bm{\alpha}}\cdots.
\end{equation}
Thus, the units of the eigenvalues $x_{\kappa\bm{\alpha}}$ are $[\mathrm{length}]$ to match the units of the coordinate operators and the units of the eigenvectors are the inverse square-root of the operators' units, i.e. $[\mathrm{length}]^{-1/2}$.
The $i^\mathrm{th}$ eigenstate of the mode $(\bm{\alpha},\kappa)$ can then be written as $\ket{\phi^{(i)}_{\kappa\bm{\alpha}}}$ with a coordinate representation
\begin{equation}
\phi_{\kappa\bm{\alpha}}^{(i)}(x) = \braket{x_{\kappa\bm{\alpha}}}{\phi^{(i)}_{\kappa\bm{\alpha}}},
\end{equation}
wherein the indices on the coordinate inside the function definition have been dropped for brevity. The eigenkets $\ket{\phi_{\kappa\bm{\alpha}}^{(i)}}$ are unitless such that the functions $\phi_{\kappa\bm{\alpha}}^{(i)}(x)$ have units of $[length]^{-1/2}$ to match the position eigenvectors. They are normalized such that
\begin{equation}
\braket{\phi_{\kappa\bm{\alpha}}^{(i)}}{\phi_{\kappa\bm{\alpha}}^{(i)}} = \int_{-\infty}^\infty\phi^{(i)*}_{\kappa\bm{\alpha}}(x)\phi^{(i)}_{\kappa\bm{\alpha}}(x)\;\mathrm{d}x_{\kappa\bm{\alpha}} = 1,
\end{equation}
where the integral has been defined with the implicit insertion of the single-particle identity operator $\hat{\bm{1}}_{\kappa\bm{\alpha}} = \int\dyad{x_{\kappa\bm{\alpha}}}{x_{\kappa\bm{\alpha}}}\;\mathrm{d}x_{\kappa\bm{\alpha}}$. Of course, we are not working in a single-particle basis, such that it is more convenient to define a composite state that is the direct product of an eigenstate of each mode and normalize using the composite many-particle identity operator
\begin{equation}
\hat{\bm{1}} = \int\cdots\int\dyad{X}{X}\;\cdots\mathrm{d}x_{\kappa\bm{\alpha}}\cdots.
\end{equation}
The particular eigenstate of each mode used will be left undefined for now, such that we can drop the superscripts and bring them back when they're needed. Explicitly, then, the composite state is $\ket{\Phi} = \cdots\ket{\phi_{\kappa\bm{\alpha}}}\ket{\phi_{\kappa\bm{\alpha}'}}\cdots\ket{\phi_{\kappa'\bm{\alpha}}}\cdots$. This composite state can be represented in the position basis as
\begin{equation}
\braket{X}{\Phi} = \prod_{\bm{\alpha},\kappa}\phi_{\kappa\bm{\alpha}}(x),
\end{equation}
where the state-by-state projection is performed ``in order'' the same way as in the projection $\braket{X'}{X}$. Therefore,
\begin{equation}
\begin{split}
\braket{\Phi}{\Phi} &= \mel{\Phi}{\hat{\bm{1}}}{\Phi} = \int\cdots\int\braket{\Phi}{X}\braket{X}{\Phi}\cdots\mathrm{d}x_{\kappa\bm{\alpha}}\cdots\\
&=\prod_{\bm{\alpha},\kappa}\int_{-\infty}^{\infty}\phi^{(i)*}_{\kappa\bm{\alpha}}(x)\phi^{(i)}_{\kappa\bm{\alpha}}(x)\;\mathrm{d}x_{\kappa\bm{\alpha}} = \prod_{\bm{\alpha},\omega}1 = 1.
\end{split}
\end{equation}
Finally, we need to define the projection of the momentum operators in position space. This is best done through an analysis of the translation operator, the generator of which is known to be momentum through de Broglie's work on matter waves. Defining a translation operator that moves the coordinate of each mode a displacement $\delta_{\kappa\bm{\alpha}}$ as
\begin{equation}
T(\Delta)\ket{X} = \cdots\ket{x_{\kappa\bm{\alpha}} + \delta_{\kappa\bm{\alpha}}}\ket{x_{\kappa\bm{\alpha}'} + \delta_{\kappa\bm{\alpha}'}}\cdots
\end{equation}
where $T$ is the operator name and $\Delta$ is the set of all the displacements, one can see from the theory of matter plane waves that the explicit form of $T$ ought to be an exponential function with an exponent proportional to a sum of functions $\sim(\mathrm{i}/\hbar)\delta_{\kappa\bm{\alpha}}\hat{p}_{\kappa\bm{\alpha}}$. The result is
\begin{equation}
\begin{split}
T(\Delta) &= \mathrm{e}^{-\frac{\mathrm{i}}{\hbar}\sum_{\kappa\bm{\alpha}}\delta_{\kappa\bm{\alpha}}\hat{p}_{\kappa\bm{\alpha}}}\\
&= \prod_{\bm{\alpha},\kappa}\mathrm{e}^{-\frac{\mathrm{i}}{\hbar}\delta_{\kappa\bm{\alpha}}\hat{p}_{\kappa\bm{\alpha}}}.
\end{split}
\end{equation}
The action of each factor in $T(\Delta)$ produces
\begin{equation}
\mathrm{e}^{-\frac{\mathrm{i}}{\hbar}\delta_{\kappa\bm{\alpha}}\hat{p}_{\kappa\bm{\alpha}}}\ket{X} = \cdots\ket{x_{\kappa'\bm{\alpha}'}}\ket{x_{\kappa\bm{\alpha}} + \delta_{\kappa\bm{\alpha}}}\ket{x_{\kappa''\bm{\alpha}''}}\cdots
\end{equation}
and the derivative of $T$ with respect to one of the displacements is
\begin{equation}
\begin{split}
\frac{\partial}{\partial\delta_{\kappa\bm{\alpha}}}\left\{\mathrm{e}^{-\frac{\mathrm{i}}{\hbar}\sum_{\kappa'\bm{\alpha}'}\delta_{\kappa'\bm{\alpha}'}\hat{p}_{\kappa'\bm{\alpha}'}}\right\} &= \frac{\partial}{\partial\delta_{\kappa\bm{\alpha}}}\left\{1- \frac{\mathrm{i}}{\hbar}\sum_{\kappa'\bm{\alpha}'}\delta_{\kappa'\bm{\alpha}'}\hat{p}_{\kappa'\bm{\alpha}'} + \mathcal{O}\left(\delta_{\kappa\bm{\alpha}}^2\right)\right\}\\
&= -\frac{\mathrm{i}}{\hbar}\sum_{\kappa'\bm{\alpha}'}\delta_{\bm{\alpha}\bm{\alpha}'}\delta_{\kappa\kappa'}\hat{p}_{\kappa'\bm{\alpha}'} + \mathcal{O}\left(\delta^2_{\kappa\bm{\alpha}}\right)\\
&= -\frac{\mathrm{i}}{\hbar}\hat{p}_{\kappa\bm{\alpha}} + \mathcal{O}\left(\delta_{\kappa\bm{\alpha}}\right).
\end{split}
\end{equation}
where we have let $\partial\delta_{\kappa'\bm{\alpha}'}/\partial\delta_{\kappa\bm{\alpha}} = \delta_{\bm{\alpha}\bm{\alpha}'}\delta_{\kappa\kappa'}$. Therefore, $\partial/\partial\delta_{\kappa\bm{\alpha}}\{T(\Delta)\}|_{\Delta\to0} = (-\mathrm{i}/\hbar)\hat{p}_{\kappa\bm{\alpha}}$. We can also see that
\begin{equation}
\begin{split}
\mel{X'}{\frac{\partial}{\partial\delta_{\kappa\bm{\alpha}}}\left\{T(\Delta)\right\}_{\Delta\to0}}{X} &= \frac{\partial}{\partial\delta_{\kappa\bm{\alpha}}}\left\{\mel{X'}{T(\Delta)}{X}\right\}_{\Delta\to0}\\
&= \frac{\partial}{\partial\delta_{\kappa\bm{\alpha}}}\left\{\braket{X'}{X + \Delta}\right\}_{\Delta\to0}\\
&= \frac{\partial}{\partial\delta_{\kappa\bm{\alpha}}}\left\{\delta\left(x'_{\kappa\bm{\alpha}} - [x_{\kappa\bm{\alpha}} + \delta_{\kappa\bm{\alpha}}]\right)\right\}_{\delta_{\kappa\bm{\alpha}}\to0}\prod_{\substack{\bm{\alpha}'\neq\bm{\alpha}\\\kappa'\neq\kappa}}\delta\left(x_{\kappa'\bm{\alpha}'} - x'_{\kappa'\bm{\alpha}'}\right)
\end{split}
\end{equation}
Using the identity $\partial/\partial x\{\delta(x - a)\} = -\delta(x - a)/(x - a)$, we can see that
\begin{equation}
\frac{\partial}{\partial\delta_{\kappa\bm{\alpha}}}\left\{\delta\left(x'_{\kappa\bm{\alpha}} - [x_{\kappa\bm{\alpha}} + \delta_{\kappa\bm{\alpha}}]\right)\right\}_{\delta_{\kappa\bm{\alpha}}\to0} = \frac{\partial}{\partial x_{\kappa\bm{\alpha}}}\left\{\delta\left(x_{\kappa\bm{\alpha}} - x'_{\kappa\bm{\alpha}}\right)\right\}
\end{equation}
such that
\begin{equation}
\mel{X'}{\hat{p}_{\kappa\bm{\alpha}}}{X} = \mathrm{i}\hbar\frac{\partial}{\partial x_{\kappa\bm{\alpha}}}\left\{\delta\left(x_{\kappa\bm{\alpha}} - x'_{\kappa\bm{\alpha}}\right)\right\}\prod_{\substack{\bm{\alpha}'\neq\bm{\alpha}\\\kappa'\neq\kappa}}\delta\left(x_{\kappa\bm{\alpha}} - x'_{\kappa\bm{\alpha}}\right).
\end{equation}
We are now in a position to calculate the eigenstates of the Hamiltonian in the position basis. Using the energy-eigenvalue equation
\begin{equation}\label{eq:energyEigenvalue1}
\hat{H}\ket{\Phi} = E_\Phi\ket{\Phi}
\end{equation}
with $E_\Phi$ the total energy of the set of excited eigenstates $\ket{\Phi}$, we find, upon insertion of the identity operator and left-projection by $\bra{X}$,
\begin{equation}\label{eq:energyEigenvalueProjection}
\begin{split}
\int\cdots\int\mel{X}{\hat{H}}{X'}\braket{X'}{\Phi}\;\cdots\mathrm{d}x'_{\kappa\bm{\alpha}}\cdots &= E_\Phi\braket{X}{\Phi}\\
\implies\int\mel{X}{\hat{H}}{X'}\Phi(X')\;\mathrm{d}X' &= E_\Phi\Phi(X).
\end{split}
\end{equation}
We have shortened the notation for ease of reading, with $\Phi(X) = \braket{X}{\Phi} = \cdots\phi_{\kappa\bm{\alpha}}(x)\cdots$ the product of mode eigenstates in the coordinate representation and $dX = \cdots\mathrm{d}x_{\kappa\bm{\alpha}}\cdots$ the product of coordinate differentials. The Hamiltonian matrix element can be further expanded as
\begin{equation}
\begin{split}
&\mel{X}{\hat{H}}{X'} = \frac{1}{2}\sum_{\kappa\bm{\alpha}}\hbar\omega\left[\mel{X}{\frac{\hat{p}^2_{\kappa\bm{\alpha}}}{\hbar^2k^2}}{X'} + \mel{X}{k^2\hat{x}^2_{\kappa\bm{\alpha}}}{X'}\right]\\
&= \frac{1}{2}\int\sum_{\kappa\bm{\alpha}}\hbar\omega\left[\frac{1}{\hbar^2k^2}\mel{X}{\hat{p}_{\kappa\bm{\alpha}}}{X''}\mel{X''}{\hat{p}_{\kappa\bm{\alpha}}}{X'} + k^2\mel{X}{\hat{x}_{\kappa\bm{\alpha}}}{X''}\mel{X''}{\hat{x}_{\kappa\bm{\alpha}}}{X'}\right]\mathrm{d}X''\\
&= \frac{1}{2}\int\sum_{\kappa\bm{\alpha}}\hbar\omega\left[-\frac{\hbar^2}{\hbar^2k^2}\frac{\partial}{\partial x'_{\kappa\bm{\alpha}}}\{\delta(x'_{\kappa\bm{\alpha}} - x''_{\kappa\bm{\alpha}})\}\frac{\partial}{\partial x''_{\kappa\bm{\alpha}}}\{\delta(x''_{\kappa\bm{\alpha}} - x_{\kappa\bm{\alpha}})\} \vphantom{\prod_{\substack{\bm{\alpha}'\neq\bm{\alpha}\\\kappa'\neq\kappa}}}\prod_{\substack{\bm{\alpha}'\neq\bm{\alpha}\\\kappa'\neq\kappa}}\delta(x''_{\kappa'\bm{\alpha}'} - x_{\kappa'\bm{\alpha}'}) \right.\\
&\hspace{0.05\textwidth}\left.\times\prod_{\substack{\bm{\alpha}'\neq\bm{\alpha}\\\kappa'\neq\kappa}}\delta(x'_{\kappa'\bm{\alpha}'} - x''_{\kappa'\bm{\alpha}'}) + k^2x'_{\kappa\bm{\alpha}}x''_{\kappa\bm{\alpha}}\prod_{\bm{\alpha},\kappa}\delta(x''_{\kappa\bm{\alpha}} - x_{\kappa\bm{\alpha}})\prod_{\bm{\alpha},\kappa}\delta(x'_{\kappa\bm{\alpha}} - x''_{\kappa\bm{\alpha}})\right]\mathrm{d}X''
\end{split}
\end{equation}
Substituting this back into the integral of Eq. \eqref{eq:energyEigenvalueProjection} and integrating by parts with respect to $x'_{\kappa\bm{\alpha}}$ produces
\begin{equation}
\begin{split}
E_\Phi\Phi(X) &= \frac{1}{2}\iint\sum_{\kappa\bm{\alpha}}\hbar\omega\left[ \vphantom{\prod_{\bm{\alpha},\kappa}} \frac{1}{k^2}\frac{\partial}{\partial x''_{\kappa\bm{\alpha}}}\{\delta(x''_{\kappa\bm{\alpha}} - x_{\kappa\bm{\alpha}})\}\delta(x'_{\kappa\bm{\alpha}} - x''_{\kappa\bm{\alpha}})\frac{\partial\Phi(X')}{\partial x'_{\kappa\bm{\alpha}}}\right.\\
&\hspace{0.05\textwidth}\times\prod_{\substack{\bm{\alpha}'\neq\bm{\alpha}\\\kappa'\neq\kappa}}\delta(x''_{\kappa'\bm{\alpha}'} - x_{\kappa'\bm{\alpha}'})\prod_{\substack{\bm{\alpha}'\neq\bm{\alpha}\\\kappa'\neq\kappa}}\delta(x'_{\kappa'\bm{\alpha}'} - x''_{\kappa'\bm{\alpha}'}) + k^2x'_{\kappa\bm{\alpha}}x''_{\kappa\bm{\alpha}}\Phi(X')\\
&\hspace{0.05\textwidth}\times\left.\prod_{\bm{\alpha},\kappa}\delta(x''_{\kappa\bm{\alpha}} - x_{\kappa\bm{\alpha}})\prod_{\bm{\alpha},\kappa}\delta(x'_{\kappa\bm{\alpha}} - x''_{\kappa\bm{\alpha}})\right]\mathrm{d}X''\,\mathrm{d}X'\\
&= \frac{1}{2}\int\sum_{\kappa\bm{\alpha}}\hbar\omega\left[\frac{1}{k^2}\frac{\partial}{\partial x'_{\kappa\bm{\alpha}}}\{\delta(x'_{\kappa\bm{\alpha}} - x_{\kappa\bm{\alpha}})\}\frac{\partial\Phi(X')}{\partial x'_{\kappa\bm{\alpha}}}\prod_{\substack{\bm{\alpha}'\neq\bm{\alpha}\\\kappa'\neq\kappa}}\delta(x'_{\kappa'\bm{\alpha}'} - x_{\kappa'\bm{\alpha}'})\right.\\
&\hspace{0.05\textwidth}\left. + k^2x'^2_{\kappa\bm{\alpha}}\Phi(X')\prod_{\bm{\alpha},\kappa}\delta(x'_{\kappa\bm{\alpha}} - x_{\kappa\bm{\alpha}}) \vphantom{\prod_{\substack{\bm{\alpha}\neq\bm{\alpha}'\\\kappa\neq\kappa'}}} \right]\mathrm{d}X'\\
\end{split}
\end{equation}
where the surface term resulting from the integration by parts has been evaluated to zero implicitly. Integrating by parts again and evaluating the Dirac deltas as appropriate gives
\begin{equation}\label{eq:energyEigenvalue2}
\begin{split}
E_\Phi\Phi(X) &= \frac{1}{2}\sum_{\kappa\bm{\alpha}}\hbar\omega\left[-\frac{1}{k^2}\frac{\partial^2\Phi(X)}{\partial x_{\kappa\bm{\alpha}}^2} + k^2x_{\kappa\bm{\alpha}}^2\Phi(X)\right].
\end{split}
\end{equation}
\subsection{Coordinate Representation - Quantum Harmonic Oscillator Solutions}
The only way for the sum of terms on the right hand side of Eq. \eqref{eq:energyEigenvalue2} to be equal to a constant times $\Phi(X)$ is for each of the terms themselves to be equal to a constant times $\Phi(X)$. We can then expand $E_\Phi$ such that $E_\Phi = \sum_{\kappa\bm{\alpha}}E_{\kappa\bm{\alpha}}$ and
\begin{equation}
\begin{split}
E_{\kappa\bm{\alpha}}\Phi(X) &= \frac{\hbar\omega}{2}\left(-\frac{1}{k^2}\frac{\partial^2}{\partial x_{\kappa\bm{\alpha}}^2} + k^2x_{\kappa\bm{\alpha}}^2\right)\Phi(X)\\
\implies E_{\kappa\bm{\alpha}}\phi_{\kappa\bm{\alpha}}(x) &= \frac{\hbar\omega}{2}\left(-\frac{1}{k^2}\frac{\partial^2}{\partial x_{\kappa\bm{\alpha}}^2} + k^2x_{\kappa\bm{\alpha}}^2\right)\phi_{\kappa\bm{\alpha}}(x),
\end{split}
\end{equation}
where in the last line all of the eigenfunctions except for $(\bm{\alpha},\kappa)$ have been cancelled as the derivative operator does not act on them. Rearrangement and temporary removal of the coordinate labels for brevity provides
\begin{equation}
\frac{\partial^2\phi_{\kappa\bm{\alpha}}(x)}{\partial x^2} + \left(\frac{2k^2E_{\kappa\bm{\alpha}}}{\hbar\omega} - k^4x^2\right)\phi_{\kappa\bm{\alpha}}(x) = 0.
\end{equation}
Because all terms proportional to the coordinate $x$ or its derivative operators are even under the interchange $x\to-x$, we must have solutions which are either even ($\phi_{\kappa\bm{\alpha}}(-x) = \phi_{\kappa\bm{\alpha}}(x)$) or odd ($\phi_{\kappa\bm{\alpha}}(-x) = -\phi_{\kappa\bm{\alpha}}(x)$) under coordinate reflection. Further, we expect our solutions to decrease to zero at $x\to\pm\infty$, as the mode wavefunction should not have any probability density at infinite excitation strengths. It turns out that a streamlined solution strategy employs a test solution $\phi_{\kappa\bm{\alpha}}(x) = \psi_{\kappa\bm{\alpha}}(x)\exp(-k^2x^2/2)$ to produce
\begin{equation}
\frac{\partial\psi_{\kappa\bm{\alpha}}(x)}{\partial x^2} - 2k^2x\frac{\partial\psi_{\kappa\bm{\alpha}}(x)}{\partial x} + \left(\frac{2E_{\kappa\bm{\alpha}}}{\hbar\omega} - 1\right)k^2\psi_{\kappa\bm{\alpha}}(x) = 0.
\end{equation}
This differential equation is known as Hermite's equation and has well-known solutions. To retrofit them to our purposes, we can rebuild them quickly using the power series expansion $\psi_{\kappa\bm{\alpha}}(x) = \sum_{q = 0}^\infty a_q(kx)^q$. Substitution and elimination of terms equal to zero provides
\begin{equation}
\sum_{q = 0}^\infty\left(a_{q + 2}(q + 2)(q + 1) - a_q\left[2q + 1 - \frac{2E_{\kappa\bm{\alpha}}}{\hbar\omega}\right]\right)(kx)^q = 0.
\end{equation}
Together with the fact that our functions $\psi_{\kappa\bm{\alpha}}$ must have definite (even or odd) parity, this recursion relation tells us that we have two sets of solutions that must be independent. The even set begins with $a_0$ and the odd set with $a_1$, such that these unknown coefficients must be found independently. Before calculating further, however, it is important to note that each term of the summand above is itself identically zero
\begin{equation}
\begin{split}
&a_{q + 2}(q + 2)(q + 1) - a_q\left((2q + 1) - \frac{2E_{\kappa\bm{\alpha}}}{\hbar\omega}\right) = 0\\
\implies &a_{q + 2} = \frac{(2q + 1) - 2E_{\kappa\bm{\alpha}}/\hbar\omega}{(q + 2)(q + 2)}a_q.
\end{split}
\end{equation}
Therefore, in the limit $q\to\infty$ each successive term is a factor $a_{q+2}/a_q\approx2/q$ times its predecessor such that the series behaves like a harmonic series. Such series are divergent, such that the only possible solutions of the form we have posited are those for which the series truncates at a finite value of $q$. Because $q$ is an integer, we therefore have an integer index, $n = \mathrm{max}\{q\}$, that characterizes each solution in either set. Importantly, truncation in a recursive system occurs when the $n^\mathrm{th}$ term in the sum goes to zero, nullifying all subsequent terms. This occurs for us only when
\begin{equation}
\begin{split}
&2n + 1 = 2\frac{E_{\kappa\bm{\alpha}}}{\hbar\omega}\\
\implies &E_{\kappa\bm{\alpha}}^{(n)} = \hbar\omega\left(n + \frac{1}{2}\right),
\end{split}
\end{equation}
such that our solutions can only exist at discrete (quantized!) energies. The superscript to $E_{\kappa\bm{\alpha}}^{(n)}$ has been added to make this clear.
With this identity fixed, we can reintroduce the index $(i)$ to our solutions $\phi_{\kappa\bm{\alpha}}^{(i)}(x)$ that we dropped earlier, but with the modification $i\to n$. Calculation of the solutions' explicit forms only requires a modest modification from here. Because our eigenfunctions are wavefunctions, they must be normalized according to $\int_{-\infty}^\infty|\phi_{\kappa\bm{\alpha}}^{(n)}(x)|^2\;\mathrm{d}x = 1$, i.e. the probability of finding any mode in a state of excitation $-\infty<x<\infty$ is always exactly one. To account for this external condition, we will introduce normalization constants $N_n$, such that
\begin{equation}\label{eq:solnSep}
\psi_{\kappa\bm{\alpha}}^{(n)}(x) =
\begin{cases}
N_n\sum_{q = 0}^{n/2}a_{2q}(kx)^{2q},& n\;\mathrm{even},\\[0.5em]
N_n\sum_{q = 0}^{(n-1)/2}a_{2q+1}(kx)^{2q+1},& n\;\mathrm{odd}.
\end{cases}
\end{equation}
The recursion relations are unaffected by this scaling, such that all unknown coefficients and normalization constants with the exception of the zeroth and first are uniquely determined by the two boundary conditions of recursion and normalization. At the zeroth and first orders, recursion provides no additional restrictions to normalization, such that we can fix $N_0 = N_1 = 1$ and calculate $a_0$ and $a_1$ from normalization alone. Explicitly, for $n = 0$ one finds that $a_{q>0} = 0$ and
\begin{equation}
\begin{split}
\psi_{\kappa\bm{\alpha}}^{(0)}(x) &= a_0,\\
\phi_{\kappa\bm{\alpha}}^{(0)}(x) &= a_0\mathrm{e}^{-\frac{k^2x^2}{2}},\\
\implies a_0 &= \left(\frac{k^2}{\pi}\right)^{\frac{1}{4}}.
\end{split}
\end{equation}
Similarly, for $n = 1$, $a_{q>1} = 0$, $\psi_{\kappa\bm{\alpha}}^{(1)}(x) = a_1kx$, and $\phi_{\kappa\bm{\alpha}}^{(1)}(x) = a_1kx\exp(-k^2x^2/2)$, implying that, upon normalization, $a_1 = \sqrt{2}(k^2/\pi)^{1/4}$. Note that the $q = 0$ term has been excised from the $n = 1$ eigenfunction by the separation of the solutions into even and odd sets in Eq. \eqref{eq:solnSep}. Repetition of this process for $n = 2$ ($a_2 = -2a_0 = -2(k^2/\pi)^{1/4}$) and $n = 3$ ($a_3 = -(2/3)a_1 = -(2\sqrt{2}/3)(k^2/\pi)^{1/4}$) provides $N_2 = -1/\sqrt{2}$ and $N_3 = -\sqrt{3/2}$ along with an inference for the general form of the solutions for all $n$:
\begin{equation}
\phi_{\kappa\bm{\alpha}}^{(n)}(x) = \frac{1}{\sqrt{2^nn!}}\left(\frac{k^2}{\pi}\right)^\frac{1}{4}H_n(kx)\mathrm{e}^{-\frac{k^2x^2}{2}}.
\end{equation}
Here, $H_n(z)$ are the Hermite polynomials which are the solutions to Hermite's equation. The first four polynomials are $H_0(z) = 1$, $H_1(z) = 2z$, $H_2(z) = 4z^2 - 2$, and $H_3(z) = 8z^3 - 12z^2$, while the rest can be found with
\begin{equation}
H_n(z) =
\begin{cases}
\displaystyle n!\sum_{q = 0}^{n/2}\frac{(-1)^{\frac{n}{2} - q}}{(2q)!\left(\frac{n}{2} - q\right)!}(2z)^{2q},& n\;\mathrm{even},\\[1.5em]
\displaystyle n!\sum_{q = 0}^{(n-1)/2}\frac{(-1)^{\frac{n-1}{2} - q}}{(2q + 1)!\left(\frac{n-1}{2} - q\right)!}(2z)^{2q + 1},& n\;\mathrm{odd}.
\end{cases}
\end{equation}
Note that some normalization coefficients are given a negative sign in order to align the wavefunctions with the sign convention used in the compilation of the Hermite polynomials, namely that the prefactor of the largest power of $z$ is always chosen to be positive. Physically, of course, a negative sign added to a wavefunction produces no difference to any observables.
\subsection{Occupation Number Representation}
With the form of the position and momentum operators as well as the eigenstates of the free electromagnetic field determined in the position basis, it is useful to simplify the notation where possible. The most important simplification can be found by analyzing the action of the oscillator operators
\begin{equation}
\begin{split}
\hat{a}_{\kappa\bm{\alpha}} &= \frac{k\sqrt{2}}{2}\hat{x}_{\kappa\bm{\alpha}} + \frac{\mathrm{i}\sqrt{2}}{2\hbar k}\hat{p}_{\kappa\bm{\alpha}},\\
\hat{a}_{\kappa\bm{\alpha}}^\dagger &= \frac{k\sqrt{2}}{2}\hat{x}_{\kappa\bm{\alpha}} - \frac{\mathrm{i}\sqrt{2}}{2\hbar k}\hat{p}_{\kappa\bm{\alpha}}
\end{split}
\end{equation}
on $\ket{\Phi}$. Using integration by parts as well as the identities
\begin{equation}
\begin{split}
\frac{\partial}{\partial x}\left\{H_n(kx)\right\} &= 2knH_{n-1}(kx),\\
\frac{\partial}{\partial x}\left\{H_n(kx)\right\} &= 2k^2xH_{n}(kx) - kH_{n+1}(kx),
\end{split}
\end{equation}
respectively, one can see that
\begin{equation}
\begin{split}
\mel{X}{\hat{a}_{\kappa\bm{\alpha}}}{\Phi} &= \sqrt{n_{\kappa\bm{\alpha}}}\phi_{\kappa\bm{\alpha}}^{(n - 1)}(x)\prod_{\substack{\bm{\alpha}'\neq\bm{\alpha}\\\kappa'\neq\kappa}}\phi_{\kappa'\bm{\alpha}'}^{(n)}(x),\\
\mel{X}{\hat{a}^\dagger_{\kappa\bm{\alpha}}}{\Phi} &= \sqrt{n_{\kappa\bm{\alpha}} + 1}\phi_{\kappa\bm{\alpha}}^{(n + 1)}(x)\prod_{\substack{\bm{\alpha}'\neq\bm{\alpha}\\\kappa'\neq\kappa}}\phi_{\kappa'\bm{\alpha}'}^{(n)}(x).
\end{split}
\end{equation}
Here, we've adorned the mode energy index $n_{\kappa\bm{\alpha}}$ with its other associated mode indices to clarify the notation. Thus, the ``oscillator operators'' (as we've been calling them due to their origination as abstract field magnitudes) are better named ladder operators or raising/lowering operators due to their ability to increase or decrease the $n$ index of an eigenstate $\ket{\phi_{\kappa\bm{\alpha}}^{(n)}}$ and therefore increase or decrease the amount of energy stored in that state by $\hbar\omega$.
Further, the operator $\hat{a}_{\kappa\bm{\alpha}}^\dagger\hat{a}_{\kappa\bm{\alpha}}$ that appears in the Hamiltonian in its simplified form in Eq. \eqref{eq:Hhat4} clearly obeys
\begin{equation}
\mel{X}{\hat{a}_{\kappa\bm{\alpha}}^\dagger\hat{a}_{\kappa\bm{\alpha}}}{\Phi} = n_{\kappa\bm{\alpha}}\Phi(X).
\end{equation}
Therefore, $\hat{a}_{\kappa\bm{\alpha}}^\dagger\hat{a}_{\kappa\bm{\alpha}}$ is a number operator that simply counts the energy index of the state $(\bm{\alpha},\kappa)$. Formally, we can also identify the energy quanta $E_{\kappa\bm{\alpha}}^{(n)}$ as \textit{photons} such that the ladder operators can be seen as annihilating or creating photons in a given state and the number operator can be seen as counting the number of photon quanta. Simplifying the notation of the states further to identify them by $n_{\kappa\bm{\alpha}}$, we can let $\ket{\phi_{\kappa\bm{\alpha}}^{(n)}}\to\ket{n_{\kappa\bm{\alpha}}}$ such that $\ket{\Phi} = \prod_{\bm{\alpha},\kappa}\ket{n_{\kappa\bm{\alpha}}}$. Further,
\begin{equation}\label{eq:raiseLowerOp}
\begin{split}
\hat{a}_{\kappa\bm{\alpha}}\ket{\Phi} &= \sqrt{n_{\kappa\bm{\alpha}}}\ket{n_{\kappa\bm{\alpha}} - 1}\prod_{\substack{\bm{\alpha}'\neq\bm{\alpha}\\\kappa'\neq\kappa}}\ket{n_{\kappa'\bm{\alpha}'}},\\
\hat{a}_{\kappa\bm{\alpha}}^\dagger\ket{\Phi} &= \sqrt{n_{\kappa\bm{\alpha}} + 1}\ket{n_{\kappa\bm{\alpha}} + 1}\prod_{\substack{\bm{\alpha}'\neq\bm{\alpha}\\\kappa'\neq\kappa}}\ket{n_{\kappa'\bm{\alpha}'}},\\
\hat{a}_{\kappa\bm{\alpha}}^\dagger\hat{a}_{\kappa\bm{\alpha}}\ket{\Phi} &= n_{\kappa\bm{\alpha}}\ket{\Phi}.
\end{split}
\end{equation}
These identities form the core of the occupation number formulation of quantum electrodynamics and allow for an enlightening simplification of the Hamiltonian. While $\hat{a}_{\kappa\bm{\alpha}}^\dagger\hat{a}_{\kappa\bm{\alpha}}$ delivers the number of photons in a given mode, the remaining operator in the Hamiltonian of Eq. \eqref{eq:Hhat4} produces $\mel{X}{\hat{a}_{\kappa\bm{\alpha}}\hat{a}^\dagger_{\kappa\bm{\alpha}}}{\Phi} = (n_{\kappa\bm{\alpha}} + 1)\Phi(X)$ and can be dubbed the ``number plus one'' operator, as it always returns one more than the energy index. Combining the two number operators and summing and integrating over $\bm{\alpha}$ and $\kappa$ provides
\begin{equation}
\begin{split}
\mel{X}{\hat{H}}{\Phi} &= \frac{1}{2}\sum_{\kappa\bm{\alpha}}\hbar\omega\left[2n_{\kappa\bm{\alpha}} + 1\right]\Phi(X)\\
&= \mel{X}{\sum_{\kappa\bm{\alpha}}\hbar\omega\left[\hat{a}_{\kappa\bm{\alpha}}^\dagger\hat{a}_{\kappa\bm{\alpha}} + \frac{1}{2}\right]}{\Phi}
\end{split}
\end{equation}
such that the Hamiltonian can be simplified to
\begin{equation}\label{eq:Hhat5}
\hat{H} = \sum_{\kappa\bm{\alpha}}\hbar\omega\left[\hat{a}_{\kappa\bm{\alpha}}^\dagger\hat{a}_{\kappa\bm{\alpha}} + \frac{1}{2}\right].
\end{equation}
The consequence of the second term in brackets above is that, even in the case where the total number of photons in the universe is zero (i.e. a vacuum), the energy bound in the electromagnetic field is not zero. In fact, it's infinite. This ``zero point energy'' or ``vacuum energy'' can be seen to produce vacuum fluctuation effects such as spontaneous decay as well as vacuum coupling effects such as the Lamb shift. Quantum electrodynamics has therefore revealed that empty space, far from being inert as is surmised in classical mechanics, can have important, if subtle, effects on the electromagnetic properties of matter.
Another example of the utility of the occupation number picture is the simple definition of coherent states of light. These states are the closest quantum analog to classical electromagnetism and are defined in a single-mode basis as $\ket{\psi_\mathrm{coh}} = \sum_{n = 0}^\infty\ket{n}\exp(-|u|^2/2)u^n/\sqrt{n!}$ such that $\hat{a}\ket{\psi_\mathrm{coh}} = u\ket{\psi_\mathrm{coh}}$. In our full multi-mode basis, a coherent state in the mode $(\bm{\alpha},\omega)$ complemented by a vacuum in each other state is given by
\begin{equation}
\begin{split}
\ket{\Psi_\mathrm{coh}} &= \sum_{n = 0}^\infty \mathrm{e}^{-\frac{|u|^2}{2}}\frac{u^n}{\sqrt{n!}}\ket{n_{\kappa\bm{\alpha}}}\prod_{\substack{\bm{\alpha}'\neq\bm{\alpha}\\\kappa'\neq\kappa}}\ket{0_{\kappa'\bm{\alpha}'}}\\
&=\sum_{n = 0}^\infty \mathrm{e}^{-\frac{|u|^2}{2}}\frac{u^n}{\sqrt{n!}}\prod_{\bm{\alpha}',\kappa'}\left[(1-\delta_{\bm{\alpha}\bm{\alpha}'}\delta_{\kappa\kappa'})\ket{0_{\kappa'\bm{\alpha}'}} + \delta_{\bm{\alpha}\bm{\alpha}'}\delta_{\kappa\kappa'}\ket{n_{\kappa\bm{\alpha}}}\right],\\[1.0em]
\hat{a}_{\kappa\bm{\alpha}}\ket{\Psi_\mathrm{coh}} &= u\ket{\Psi_\mathrm{coh}}.
\end{split}
\end{equation}
To see how the unitless amplitude $u$ is produced by application of the lowering operator, one can use the identities
\begin{equation}
\begin{split}
\sum_{n = 1}^\infty \mathrm{e}^{-|u|^2}\frac{u^n(u^*)^{n-1}}{(n - 1)!} &= u,\\
\sum_{n = 0}^\infty \mathrm{e}^{-|u|^2}\frac{u^n(u^*)^{n+1}}{n!} &= u^*\\
\end{split}
\end{equation}
(which can be derived from $\sum_{n = 0}^\infty\exp(-|u|^2)u^n(u^*)^n/n! = 1$) along with the identities of Eq. \eqref{eq:raiseLowerOp}.
The analogy between coherent states is made clear by taking the expectation value of the electric field operator with respect to these coherent states. This is done formally by
\begin{equation}
\begin{split}
&\mel{\Psi_\mathrm{coh}}{\hat{\mathbf{E}}(\mathbf{r},t)}{\Psi_\mathrm{coh}} = \mel{\Psi_\mathrm{coh}}{\mathrm{i} k\sqrt{\frac{\hbar\omega}{\pi L}}\sum_{\kappa\bm{\alpha}}\left[\hat{a}_{\bm{\alpha}}(\kappa,t) - \hat{a}_{\bm{\alpha}}^\dagger(\kappa,t)\right]\mathbf{X}_{\bm{\alpha}}(\mathbf{r},k)}{\Psi_\mathrm{coh}}\\
&= \bra{\Psi_\mathrm{coh}}\sum_{\kappa\bm{\alpha}}\sum_{n = 0}\mathrm{e}^{-\frac{|u|^2}{2}}\frac{u^n}{\sqrt{n!}}\mathrm{i}k\sqrt{\frac{\hbar\omega}{\pi L}}\left[\mathrm{e}^{-\mathrm{i}\omega t}\sqrt{n}\delta_{\bm{\alpha}\bm{\alpha}'}\delta_{\kappa\kappa'}\ket{n_{\bm{\alpha'}}(\kappa') - 1}\prod_{\substack{\bm{\alpha}''\neq\bm{\alpha}'\\\kappa''\neq\kappa'}}\ket{0_{\bm{\alpha}''}(\kappa'')}\right.\\
&\hspace{0.05\textwidth}- \mathrm{e}^{\mathrm{i}\omega t}\left(\sqrt{n + 1}\delta_{\bm{\alpha}\bm{\alpha}'}\delta_{\kappa\kappa'}\ket{n_{\bm{\alpha}'}(\kappa') + 1}\prod_{\substack{\bm{\alpha}''\neq\bm{\alpha}'\\\kappa''\neq\kappa'}}\ket{0_{\bm{\alpha}''}(\kappa'')}\right.\\
&\hspace{0.05\textwidth}\left.\left.+ \delta_{\bm{\alpha}\bm{\alpha}''}\delta_{\kappa\kappa''}\ket{n_{\bm{\alpha}'}(\kappa')}\ket{1_{\bm{\alpha}''}(\kappa'')}\prod_{\substack{\bm{\alpha}'''\neq\bm{\alpha}''\neq\bm{\alpha}'\\\kappa'''\neq\kappa''\neq\kappa'}}\ket{0_{\bm{\alpha}'''}(\kappa''')}\right)\right]\mathbf{X}_{\bm{\alpha}}(\mathbf{r},k)\\
&= \mathrm{i}k'\sqrt{\frac{\hbar\omega'}{\pi L}}\left[\sum_{n=1}^\infty\sqrt{n}\mathrm{e}^{|u|^2}\frac{u^n(u^*)^{n-1}}{\sqrt{n!(n-1)!}}\mathrm{e}^{-\mathrm{i}\omega' t} - \sum_{n = 0}^\infty\sqrt{n+1}\mathrm{e}^{-|u|^2}\frac{u^n(u^*)^{n+1}}{\sqrt{n!(n+1)!}}\mathrm{e}^{\mathrm{i}\omega' t}\right]\mathbf{X}_{\bm{\alpha}'}(\mathbf{r},k')\\[1.0em]
&= \mathrm{i}k'\sqrt{\frac{\hbar\omega'}{\pi L}}\left(u\mathrm{e}^{-\mathrm{i}\omega't} - u^*\mathrm{e}^{\mathrm{i}\omega't}\right)\mathbf{X}_{\bm{\alpha}'}(\mathbf{r},k').
\end{split}
\end{equation}
Letting $u = |u|\exp(\mathrm{i}\eta)$ with $\eta$ a phase angle, one finds
\begin{equation}
\begin{split}
\mel{\Psi_\mathrm{coh}}{\hat{\mathbf{E}}(\mathbf{r},t)}{\Psi_\mathrm{coh}} &= k'\sqrt{\frac{\hbar\omega'}{\pi L}}|u|\left(\mathrm{e}^{-\mathrm{i}\omega't + \mathrm{i}\eta + \mathrm{i}\frac{\pi}{2}} + \mathrm{e}^{\mathrm{i}\omega't - \mathrm{i}\eta - \mathrm{i}\frac{\pi}{2}}\right)\mathbf{X}_{\bm{\alpha}'}(\mathbf{r},k')\\
&= 2k'|u|\sqrt{\frac{\hbar\omega'}{\pi L}}\cos(\omega't - \eta - \frac{\pi}{2})\mathbf{X}_{\bm{\alpha}'}(\mathbf{r},k'),
\end{split}
\end{equation}
which, letting the characteristic electric field strength be $E_0 = 2k'|u|\sqrt{\hbar \omega'/\pi L}$, is simply the electric field of a monochromatic spherical wave of angular frequency $\omega'$ (wavenumber $k'$) and with a field profile determined by $\bm{\alpha}'$. In Fourier space, this field is described by
\begin{equation}
\begin{split}
\mel{\Psi_\mathrm{coh}}{\hat{\mathbf{E}}(\mathbf{r},\omega)}{\Psi_\mathrm{coh}} &= \int \mel{\Psi_\mathrm{coh}}{\hat{\mathbf{E}}(\mathbf{r},t)}{\Psi_\mathrm{coh}}\mathrm{e}^{\mathrm{i}\omega t}\;\mathrm{d}t\\
&= E_0\left[\pi\delta(\omega - \omega')\mathrm{e}^{\mathrm{i}(\eta + \frac{\pi}{2})} + \pi\delta(\omega + \omega')\mathrm{e}^{\mathrm{-i}(\eta + \frac{\pi}{2})}\right]\mathbf{X}_{\bm{\alpha}'}(\mathbf{r},k'),
\end{split}
\end{equation}
which highlights the monochromatic nature of the wave through the spectral density functions $\delta(\omega\mp\omega')$.
\newpage
\appendix
\renewcommand{\theequation}{\thesection.\arabic{equation}}
\section{Wave Equation Details}
Maxwell's equations in free space in both classical and quantum electrodynamics can be written as
\begin{equation}
\begin{split}
\nabla\cdot\mathbf{E}(\mathbf{r},t) &= 4\pi\rho(\mathbf{r},t),\\
\nabla\cdot\mathbf{B}(\mathbf{r},t) &= 0,\\
\nabla\times\mathbf{E}(\mathbf{r},t) &= -\frac{1}{c}\frac{\partial}{\partial t}\mathbf{B}(\mathbf{r},t),\\
\nabla\times\mathbf{B}(\mathbf{r},t) &= \frac{4\pi}{c}\mathbf{J}(\mathbf{r},t) + \frac{1}{c}\frac{\partial}{\partial t}\mathbf{E}(\mathbf{r},t),
\end{split}
\end{equation}
where in classical mechanics the electric field, magnetic field, current density, and charge density are real vector or scalar fields obeying the appropriate Poisson bracket relations and in quantum mechanics they are real vector or scalar field \textit{operators} that act on the photon field in the Fock representation and obey the appropriate commutation bracket relations. To specify that they are operators, one can include hats ``$\;\hat{}\;$'' on each field to distinguish them from the non-operator variables $\mathbf{r}$ and $t$.
The wave equations for $\mathbf{E}(\mathbf{r},t)$ and $\mathbf{B}(\mathbf{r},t)$ are then found by taking the curl of Faraday's law and Amp\`{e}re's law, such that
\begin{equation}\label{eq:waveEqTime}
\begin{split}
\nabla\times\nabla\times\mathbf{E}(\mathbf{r},t) + \frac{1}{c^2}\frac{\partial^2}{\partial t^2}\mathbf{E}(\mathbf{r},t) &= -\frac{4\pi}{c^2}\frac{\partial}{\partial t}\mathbf{J}(\mathbf{r},t),\\
\nabla\times\nabla\times\mathbf{B}(\mathbf{r},t) + \frac{1}{c^2}\frac{\partial^2}{\partial t^2}\mathbf{B}(\mathbf{r},t) &= \frac{4\pi}{c}\nabla\times\mathbf{J}(\mathbf{r},t).
\end{split}
\end{equation}
The solutions to these are often easier to describe in the Fourier domain, in which the time-derivative operators are converted to algebraic prefactors $\partial/\partial t\to-\mathrm{i}\omega$ such that the four-dimensional PDEs become three-dimension PDEs more susceptible to solutions via common boundary value methods. Explicitly, the wave equations become
\begin{equation}\label{eq:waveEqFreq}
\begin{split}
\nabla\times\nabla\times\mathbf{E}(\mathbf{r},\omega) - \frac{\omega^2}{c^2}\mathbf{E}(\mathbf{r},\omega) &= \frac{4\pi\mathrm{i}\omega}{c^2}\mathbf{J}(\mathbf{r},\omega),\\
\nabla\times\nabla\times\mathbf{B}(\mathbf{r},\omega) - \frac{\omega^2}{c^2}\mathbf{B}(\mathbf{r},\omega) &= \frac{4\pi}{c}\nabla\times\mathbf{J}(\mathbf{r},\omega),
\end{split}
\end{equation}
where we note that the field functions $\mathbf{F}(\mathbf{r},t)$ and $\mathbf{F}(\mathbf{r},\omega)$ are in general different at fixed $\mathbf{r}$ for identical numerical values of $t$ and $\omega$, respectively, but we will omit the traditional modifications ``$\;\tilde{}\;$'' to the function symbols that indicate this difference due to the resulting heaviness in the notation.
\section{Green's Function Details}\label{app:greenFuncDetails}
\subsection{Green's Function of Free Space}
In spherical coordinates, the Green function to the Helmholtz equation of free space (Eq. [\ref{eq:waveEqFreq}]) is given by
\begin{equation}\label{eq:G0}
\begin{split}
\mathbf{G}_0(\mathbf{r},\mathbf{r}';\omega) &= \frac{\mathrm{i}\omega}{4\pi c}\sum_{p\ell m}\left[\bm{\mathcal{M}}_{p\ell m}(\mathbf{r},k)\mathbf{M}_{p\ell m}(\mathbf{r}',k) + \bm{\mathcal{N}}_{p\ell m}(\mathbf{r},k)\mathbf{N}_{p\ell m}(\mathbf{r}',k)\right]\Theta(r - r') + \\
&+ \frac{\mathrm{i}\omega}{4\pi c}\sum_{p\ell m}\left[\mathbf{M}_{p\ell m}(\mathbf{r},k)\bm{\mathcal{M}}_{p\ell m}(\mathbf{r}',k) + \mathbf{N}_{p\ell m}(\mathbf{r},k)\bm{\mathcal{N}}_{p\ell m}(\mathbf{r}',k)\right]\Theta(r' - r) - \frac{1}{k^2}\hat{\mathbf{r}}\hat{\mathbf{r}}\delta(\mathbf{r} - \mathbf{r}').
\end{split}
\end{equation}
Here $k = \omega/c$ is the wavenumber of light traveling through vacuum with freqeuncy $\omega$. The vector solid spherical harmonics $\mathbf{M}_{p\ell m}(\mathbf{r},k)$, $\mathbf{N}_{p\ell m}(\mathbf{r},k)$, $\bm{\mathcal{M}}_{p\ell m}(\mathbf{r},k)$, and $\bm{\mathcal{N}}_{p\ell m}(\mathbf{r},k)$, describe the magnitude of excitation of a given mode $T,p,\ell,m$ of the field by a current $\mathbf{J}(\mathbf{r},\omega)$, as described by the solution to Eq. \ref{eq:waveEqFreq},
\begin{equation}
\mathbf{E}(\mathbf{r},\omega) = \frac{4\pi\mathrm{i}\omega}{c}\int\mathbf{G}_0(\mathbf{r},\mathbf{r}';\omega)\cdot\frac{\mathbf{J}(\mathbf{r}',\omega)}{c}\;\mathrm{d}^3\mathbf{r}'.
\end{equation}
Details of the harmonics are given in Section \ref{sec:harmDef}.
% The Dirac delta in Eq. \eqref{eq:G0} removes the field divergence at the location of the current, i.e. at $\mathbf{r} = \mathbf{r}'$.
% To see this, we can use the vector spherical harmonic identity
% \begin{equation}
% \int_0^\infty\frac{\kappa^3}{\kappa^2 - k^2}\mathbf{X}_{Tp\ell m}(\mathbf{r},\kappa)\mathbf{X}_{Tp\ell m}(\mathbf{r}',\kappa)\;\mathrm{d}\kappa = \frac{\mathrm{i}\pi k^2}{2}
% \begin{cases}
% \mathcal{\bm{X}}_{Tp\ell m}(\mathbf{r},k)\mathbf{X}_{Tp\ell m}(\mathbf{r}',k), & r > r',\\
% \mathbf{X}_{Tp\ell m}(\mathbf{r},k)\mathcal{\bm{X}}_{Tp\ell m}(\mathbf{r}',k), & r < r',\\
% \end{cases}
% \end{equation}
% along with Eq. \eqref{eq:completeness} to say
\subsection{Harmonic Definitions}\label{sec:harmDef}
The dyadic Green's function of a sphere is composed of transverse vector spherical harmonics
\begin{equation}
\begin{split}
\mathbf{M}_{p\ell m}(\mathbf{r},k) &= \sqrt{K_{\ell m}}\left[\frac{(-1)^{p + 1}m}{\sin\theta}j_\ell(kr)P_{\ell m}(\cos\theta)S_{p+1}(m\phi)\hat{\bm{\theta}} - j_\ell(kr)\frac{\partial P_{\ell m}(\cos\theta)}{\partial\theta}S_p(m\phi)\hat{\bm{\phi}}\right]\\[0.5em]
\mathbf{N}_{p\ell m}(\mathbf{r},k) &= \sqrt{K_{\ell m}}\left[\frac{\ell(\ell + 1)}{kr}j_\ell(kr)P_{\ell m}(\cos\theta)S_p(m\phi)\hat{\mathbf{r}}\right.\\
&+ \left.\frac{1}{kr}\frac{\partial\{rj_\ell(kr)\}}{\partial r}\left(\frac{\partial P_{\ell m}(\cos\theta)}{\partial\theta}S_p(m\phi)\hat{\bm{\theta}} + \frac{(-1)^{p+1}m}{\sin\theta}P_{\ell m}(\cos\theta)S_{p + 1}(m\phi)\hat{\bm{\phi}}\right)\right],
\end{split}
\end{equation}
and longitudinal vector spherical harmonics
\begin{equation}
\begin{split}
\nabla f_{p\ell m}^{<}(\mathbf{r}) &= \nabla\left\{\sqrt{(2 - \delta_{m0})\frac{(\ell - m)!}{(\ell + m)!}}r^\ell P_{\ell m}(\cos\theta)S_p(m\phi)\right\},\\
\nabla f_{p\ell m}^{>}(\mathbf{r}) &= \nabla\left\{\sqrt{(2 - \delta_{m0})\frac{(\ell - m)!}{(\ell + m)!}}\frac{1}{r^{\ell + 1}}P_{\ell m}(\cos\theta)S_p(m\phi)\right\},
\end{split}
\end{equation}
where $j_\ell(x)$ are spherical Bessel functions, $P_{\ell m}(x)$ are associated Legendre polynomials, and
\begin{equation}
S_p(x) =
\begin{cases}
\cos(x), & p\;\;\mathrm{even},\\
\sin(x), & p \;\;\mathrm{odd}.
\end{cases}
\end{equation}