You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
[SPARK-26503][CORE][DOC][FOLLOWUP] Get rid of spark.sql.legacy.timeParser.enabled
## What changes were proposed in this pull request?
The SQL config `spark.sql.legacy.timeParser.enabled` was removed by apache#23495. The PR cleans up the SQL migration guide and the comment for `UnixTimestamp`.
Closesapache#23529 from MaxGekk/get-rid-off-legacy-parser-followup.
Authored-by: Maxim Gekk <max.gekk@gmail.com>
Signed-off-by: Hyukjin Kwon <gurwls223@apache.org>
- In Spark version 2.4 and earlier, the `SET` command works without any warnings even if the specified key is for `SparkConf` entries and it has no effect because the command does not update `SparkConf`, but the behavior might confuse users. Since 3.0, the command fails if a `SparkConf` key is used. You can disable such a check by setting `spark.sql.legacy.setCommandRejectsSparkCoreConfs` to `false`.
35
35
36
-
- Since Spark 3.0, CSV/JSON datasources use java.time API for parsing and generating CSV/JSON content. In Spark version 2.4 and earlier, java.text.SimpleDateFormat is used for the same purpose with fallbacks to the parsing mechanisms of Spark 2.0 and 1.x. For example, `2018-12-08 10:39:21.123` with the pattern `yyyy-MM-dd'T'HH:mm:ss.SSS` cannot be parsed since Spark 3.0 because the timestamp does not match to the pattern but it can be parsed by earlier Spark versions due to a fallback to `Timestamp.valueOf`. To parse the same timestamp since Spark 3.0, the pattern should be `yyyy-MM-dd HH:mm:ss.SSS`. To switch back to the implementation used in Spark 2.4 and earlier, set `spark.sql.legacy.timeParser.enabled` to `true`.
36
+
- Since Spark 3.0, CSV/JSON datasources use java.time API for parsing and generating CSV/JSON content. In Spark version 2.4 and earlier, java.text.SimpleDateFormat is used for the same purpose with fallbacks to the parsing mechanisms of Spark 2.0 and 1.x. For example, `2018-12-08 10:39:21.123` with the pattern `yyyy-MM-dd'T'HH:mm:ss.SSS` cannot be parsed since Spark 3.0 because the timestamp does not match to the pattern but it can be parsed by earlier Spark versions due to a fallback to `Timestamp.valueOf`. To parse the same timestamp since Spark 3.0, the pattern should be `yyyy-MM-dd HH:mm:ss.SSS`.
37
37
38
38
- In Spark version 2.4 and earlier, CSV datasource converts a malformed CSV string to a row with all `null`s in the PERMISSIVE mode. Since Spark 3.0, the returned row can contain non-`null` fields if some of CSV column values were parsed and converted to desired types successfully.
39
39
40
40
- In Spark version 2.4 and earlier, JSON datasource and JSON functions like `from_json` convert a bad JSON record to a row with all `null`s in the PERMISSIVE mode when specified schema is `StructType`. Since Spark 3.0, the returned row can contain non-`null` fields if some of JSON column values were parsed and converted to desired types successfully.
41
41
42
-
- Since Spark 3.0, the `unix_timestamp`, `date_format`, `to_unix_timestamp`, `from_unixtime`, `to_date`, `to_timestamp` functions use java.time API for parsing and formatting dates/timestamps from/to strings by using ISO chronology (https://docs.oracle.com/javase/8/docs/api/java/time/chrono/IsoChronology.html) based on Proleptic Gregorian calendar. In Spark version 2.4 and earlier, java.text.SimpleDateFormat and java.util.GregorianCalendar (hybrid calendar that supports both the Julian and Gregorian calendar systems, see https://docs.oracle.com/javase/7/docs/api/java/util/GregorianCalendar.html) is used for the same purpose. New implementation supports pattern formats as described here https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html and performs strict checking of its input. For example, the `2015-07-22 10:00:00` timestamp cannot be parse if pattern is `yyyy-MM-dd` because the parser does not consume whole input. Another example is the `31/01/2015 00:00` input cannot be parsed by the `dd/MM/yyyy hh:mm` pattern because `hh` supposes hours in the range `1-12`. To switch back to the implementation used in Spark 2.4 and earlier, set `spark.sql.legacy.timeParser.enabled` to `true`.
42
+
- Since Spark 3.0, the `unix_timestamp`, `date_format`, `to_unix_timestamp`, `from_unixtime`, `to_date`, `to_timestamp` functions use java.time API for parsing and formatting dates/timestamps from/to strings by using ISO chronology (https://docs.oracle.com/javase/8/docs/api/java/time/chrono/IsoChronology.html) based on Proleptic Gregorian calendar. In Spark version 2.4 and earlier, java.text.SimpleDateFormat and java.util.GregorianCalendar (hybrid calendar that supports both the Julian and Gregorian calendar systems, see https://docs.oracle.com/javase/7/docs/api/java/util/GregorianCalendar.html) is used for the same purpose. New implementation supports pattern formats as described here https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html and performs strict checking of its input. For example, the `2015-07-22 10:00:00` timestamp cannot be parse if pattern is `yyyy-MM-dd` because the parser does not consume whole input. Another example is the `31/01/2015 00:00` input cannot be parsed by the `dd/MM/yyyy hh:mm` pattern because `hh` supposes hours in the range `1-12`.
43
43
44
44
- Since Spark 3.0, JSON datasource and JSON function `schema_of_json` infer TimestampType from string values if they match to the pattern defined by the JSON option `timestampFormat`. Set JSON option `inferTimestamp` to `false` to disable such type inferring.
0 commit comments