-
Notifications
You must be signed in to change notification settings - Fork 55
/
inference.py
82 lines (68 loc) · 2.77 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import os
import json
import argparse
import numpy as np
import torch
import torchaudio
from tqdm import tqdm
from datetime import datetime
from model import WaveGrad
from benchmark import compute_rtf
from utils import ConfigWrapper, show_message, str2bool, parse_filelist
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'-c', '--config', required=True,
type=str, help='configuration file path'
)
parser.add_argument(
'-ch', '--checkpoint_path',
required=True, type=str, help='checkpoint path'
)
parser.add_argument(
'-ns', '--noise_schedule_path', required=True, type=str,
help='noise schedule, should be just a torch.Tensor array of shape [n_iter]'
)
parser.add_argument(
'-m', '--mel_filelist', required=True, type=str,
help='mel spectorgram filelist, files of which should be just a torch.Tensor array of shape [n_mels, T]'
)
parser.add_argument(
'-v', '--verbose', required=False, type=str2bool,
nargs='?', const=True, default=True, help='verbosity level'
)
args = parser.parse_args()
# Initialize config
with open(args.config) as f:
config = ConfigWrapper(**json.load(f))
# Initialize the model
model = WaveGrad(config)
model.load_state_dict(torch.load(args.checkpoint_path)['model'], strict=False)
# Set noise schedule
noise_schedule = torch.load(args.noise_schedule_path)
n_iter = noise_schedule.shape[-1]
init_fn = lambda **kwargs: noise_schedule
init_kwargs = {'steps': n_iter}
model.set_new_noise_schedule(init_fn, init_kwargs)
# Trying to run inference on GPU
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = model.to(device)
# Inference
filelist = parse_filelist(args.mel_filelist)
rtfs = []
for mel_path in (tqdm(filelist, leave=False) if args.verbose else filelist):
with torch.no_grad():
mel = torch.load(mel_path).unsqueeze(0).to(device)
start = datetime.now()
outputs = model.forward(mel, store_intermediate_states=False)
end = datetime.now()
outputs = outputs.cpu().squeeze()
baseidx = os.path.basename(os.path.abspath(mel_path)).split('_')[-1].replace('.pt', '')
save_path = f'{os.path.dirname(os.path.abspath(mel_path))}/predicted_{baseidx}.wav'
torchaudio.save(
save_path, outputs, sample_rate=config.data_config.sample_rate
)
inference_time = (end - start).total_seconds()
rtf = compute_rtf(outputs, inference_time, sample_rate=config.data_config.sample_rate)
rtfs.append(rtf)
show_message(f'Done. RTF estimate: {np.mean(rtfs)} ± {np.std(rtfs)}', verbose=args.verbose)