forked from FluidityProject/fluidity
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_advection_diffusion_options.rnc
7243 lines (7067 loc) · 256 KB
/
test_advection_diffusion_options.rnc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
include "spud_base.rnc"
include "diagnostic_algorithms.rnc"
include "stabilisation.rnc"
start =
(
## The root node of the options dictionary.
element fluidity_options {
comment,
## Model output files are named according to the simulation
## name, e.g. [simulation_name]_0.vtu. Non-standard
## characters in the simulation name should be avoided.
element simulation_name {
anystring
},
## Options dealing with the specification of geometry
element geometry {
## Dimension of the problem.
## <b>This can only be set once</b>
element dimension {
element integer_value {
attribute rank {"0"},
("3"|"2"|"1")
}
},
## The position mesh
element mesh {
attribute name { "CoordinateMesh" },
mesh_info
},
## The velocity mesh
element mesh {
attribute name { "VelocityMesh" },
mesh_info
},
element mesh {
attribute name { xsd:string },
mesh_info,
element exclude_from_mesh_adaptivity{empty}?
}*,
## Quadrature
element quadrature {
## Quadrature degree
##
## note: this specifies the degree of quadrature,
## not the number of gauss points
element degree {
integer
},
## Surface quadrature degree
##
## note: this specifies the degree of surface
## quadrature not the number of surface gauss points
element surface_degree {
integer
}?,
## Select which family of quadrature rules to use.
## The default is family_cools.
## family_wandzura allows for degree up to 30
## on triangular meshes.
## family_grundmann_moeller allows for degree up to
## 29 on simplicial meshes in arbitrary dimension.
element quadrature_family {
( "family_cools" | "family_grundmann_moeller" | "family_wandzura" )
}?
}
},
## Input/output options
element io {
## Format for dump files. Only vtk for now.
element dump_format {
element string_value{
"vtk"
}
},
(
## Period between dumps in time units.
##
## Specifies the period between each dump of the solution to disk.
## A value of 0.0 indicates that there would be a dump at every timestep.
element dump_period {
(
element constant {
real
}|
## Python function prescribing real input. Functions should be of the form:
##
## def val(t):
## # Function code
## return # Return value
##
##
element python {
python_code
}
)
}|
## Dump period, in timesteps.
##
## Specifies the number of timesteps between each dump of the solution to disk.
## A value of 0 indicates a dump at every timestep.
element dump_period_in_timesteps {
(
element constant {
integer
}|
## Python function prescribing real input. Functions should be of the form:
##
## def val(t):
## # Function code
## return # Return value
##
##
element python {
python_code
}
)
}
),
# every CPUDUM seconds write results to disc.
## This is usually disabled.
element cpu_dump_period {
real
}?,
## The period between dumps in walltime seconds. This is usually disabled.
element wall_time_dump_period {
real
}?,
(
## The mesh on to which all the fields will be
## interpolated for VTK output.
element output_mesh {
attribute name { "VelocityMesh" }
}|
## The mesh on to which all the fields will be
## interpolated for VTK output.
element output_mesh {
attribute name { "PressureMesh" }
}|
## The mesh on to which all the fields will be
## interpolated for VTK output.
element output_mesh {
attribute name { "CoordinateMesh" }
}|
## The mesh on to which all the fields will be
## interpolated for VTK output.
element output_mesh {
attribute name { xsd:string }
}
)
},
## Options dealing with time discretisation
element timestepping {
## Current simulation time. At the start of the simulation this
## is the start time.
element current_time {
real,
## The following excerpt from the Udunits
## documentation explains the time unit encoding by
## example:
##
## The specification:
##
## seconds since 1992-10-8 15:15:42.5 -6:00
##
## indicates seconds since October 8th, 1992 at 3
## hours, 15 minutes and 42.5 seconds in the afternoon
## in the time zone which is six hours to the west of
## Coordinated Universal Time (i.e. Mountain Daylight
## Time). The time zone specification can also be
## written without a colon using one or two-digits
## (indicating hours) or three or four digits
## (indicating hours and minutes).
##
## Time units are particularly required in situations
## where the problem (time-varying) boundary conditions
## and/ initial conditions are a function of time as
## defined by a calendar. Examples include atmospheric
## forcing and climatology. The current time, specified
## above, is zero at the reference data/time.
element time_units{attribute date { xsd:string }}?
},
## The time step size. If adaptive time stepping is used
## then this is the initial time step size.
element timestep {
real
},
## Simulation time at which the simulation should end.
element finish_time {
real
},
## Timestep after which the simulation should end.
element final_timestep {
integer
}?,
## Maximum CPU time (secs) taken up before
## simulation terminates writing results to disc.
##
## Manual suggests 1.E+20
element cpu_time_limit {
real
}?,
## Maximum wall time (secs) taken up before
## simulation terminates writing results to disc.
##
## This is usually disabled.
element wall_time_limit {
real
}?
},
## The material or phase options
element material_phase {
attribute name { "Fluid" },
(
## Velocity vector and momentum options
element vector_field {
attribute rank { "1" },
attribute name { "Velocity" },
## Field type
element prescribed {
element mesh {
attribute name { "VelocityMesh" }
},
prescribed_vector_field
}
}?,
## Passive Tracer
element scalar_field {
attribute rank { "0" },
attribute name { "Tracer" },
element prognostic {
velocity_mesh_choice,
prognostic_scalar_field
}
},
## CFLNumber
##
## See http://amcg.ese.ic.ac.uk/index.php?title=Local:Diagnostics#CFL_Number
##
## Adapting to this field is not recommended
element scalar_field {
attribute rank { "0" },
attribute name { "CFLNumber" },
(
element diagnostic {
internal_algorithm,
velocity_mesh_choice,
diagnostic_scalar_field
}
)
}?
#scalar_field_choice*,
#vector_field_choice*,
#tensor_field_choice*
)
}
}
)
# Choice of input method, e.g. for boundary conditions
input_choice_real =
(
input_choice_real_contents
)
input_choice_real_plus_boundary_forcing =
(
input_choice_real_contents|
element from_file {
element tidal {
attribute file_name { string },
attribute variable_name_amplitude { string },
attribute variable_name_phase { string },
## See E.W. Schwiderski - Rev. Geophys. Space
## Phys. Vol. 18 No. 1 pp. 243--268, 1980
## for details of these constituent.
attribute name {"M2"|"S2"|"N2"|"K2"|"K1"|"O1"|"P1"|"Q1"|"Mf"|"Mm"|"Ssa"}
}+
}
)
input_choice_real_plus_file =
(
input_choice_real_contents|
## Initialise the field from an existing file (indended primarily for picking up prescribed fields from previously run prognostic simulations). The file mesh must match the mesh of this field (except for piecewise constant fields which will be remapped back from the discontinuous nodal values).
##
## THIS WILL NOT WORK FOR PRESCRIBED FIELDS NOT DIRECTLY UNDERNEATH /material_phase
element from_file {
attribute file_name { xsd:string },
## The format of the input file containing field data.
element format {
element string_value {
"vtu"
}
},
comment
}
)
input_choice_real_contents =
## Constant value
element constant {
real
}|
## Python function prescribing real input. Functions should be of the form:
##
## def val(X, t):
## # Function code
## return # Return value
##
## where X is a tuple of length geometry dimension.
element python {
python_code
}
# Choice of input method for initial conditions
# Note: combine = "choice" should be used here to combine with input_choice_real, but Diamond doesn't support it
input_choice_initial_condition_real =
(
## Constant value
element constant {
real
}|
## Python function prescribing real input. Functions should be of the form:
##
## def val(X, t):
## # Function code
## return # Return value
##
## where X is a tuple of length geometry dimension.
element python {
python_code
}|
## Initialise the field from an existing file (indended
## primarily for use in checkpointing). The file mesh must match
## the mesh of this field (except for piecewise constant fields
## which will be remapped back from the discontinuous nodal values).
## In parallel the process number is
## appended to the filename, e.g. if the file_name attribute is
## set to "input.vtu", process 0 reads from "input-0.vtu".
element from_file {
attribute file_name { xsd:string },
## The format of the input file containing field
## data. Supported formats include: NetCDF CF 1.4
## (http://cf-pcmdi.llnl.gov/)
element format {
element string_value {
"vtu"|"NetCDF - CF 1.x"
}
},
comment
}
)
# Choice of input method, e.g. for boundary conditions
input_choice_real_dim_vector =
(
input_choice_real_dim_vector_contents
)
# Choice of input method, e.g. for prescribed fields
input_choice_real_dim_vector_plus_file =
(
input_choice_real_dim_vector_contents|
## Initialise the field from an existing file (indended primarily for picking up prescribed fields from previously run prognostic simulations). The file mesh must match the mesh of this field (except for piecewise constant fields which will be remapped back from the discontinuous nodal values).
##
## THIS WILL NOT WORK FOR PRESCRIBED FIELDS NOT DIRECTLY UNDERNEATH /material_phase
element from_file {
attribute file_name { xsd:string },
## The format of the input file containing field data.
element format {
element string_value {
"vtu"
}
},
comment
}
)
input_choice_real_dim_vector_contents =
## Constant value
element constant {
real_dim_vector
}|
## Python function prescribing dimensional vector input. Functions should be of the form:
##
## def val(X, t):
## # Function code
## return # Return value
##
## where X and the return value are tuples of length geometry dimension.
element python {
python_code
}
# Choice of input method, e.g. for boundary conditions
# this one specifies a vector field of dim minus one
input_choice_real_dim_minus_one_vector =
(
## Constant value
element constant {
real_dim_minus_one_vector
}|
## Python function prescribing dimensional vector input. Functions should be of the form:
##
## def val(X, t):
## # Function code
## return # Return value
##
## where X and the return value are tuples of length geometry dimension.
element python {
python_code
}
)
## Import data from NetCDF CF-1.x file.
input_choice_netcdf =
(
element from_file {
## The format of this file should conform to NetCDF CF 1.x
## (http://cf-pcmdi.llnl.gov/)
attribute file_name { xsd:string },
comment
}
)
# Choice of input method for initial conditions
# Note: combine = "choice" should be used here to combine with input_choice_real, but Diamond doesn't support it
input_choice_initial_condition_vector =
(
## Constant value
element constant {
real_dim_vector
}|
## Python function prescribing dimensional vector input. Functions should be of the form:
##
## def val(X, t):
## # Function code
## return # Return value
##
## where X and the return value are tuples of length geometry dimension.
element python {
python_code
}|
## Initialise the field from an existing file (indended primarily for use in checkpointing). The file mesh must match the mesh of this field (except for piecewise constant fields which will be remapped back from the discontinuous nodal values).
element from_file {
attribute file_name { xsd:string },
## The format of the input file containing field data.
element format {
element string_value {
"vtu"
}
},
comment
}
)
# Choice of input method for initial/boundary conditions
# version for real symmetric tensor
input_choice_real_dim_symmetric_tensor =
(
## Constant symmetric tensor
element constant {
real_dim_symmetric_tensor
}|
## Python command prescribing symmetric tensor input.
##
## Note that it is for the python function to determine
## that the results it produces are, in fact, symmetric.
##
## An example that returns the three-dimensional identity:
##
## def val(X, t):
## return [[1, 0, 0],
## [0, 1, 0],
## [0, 0, 1]]
element python {
python_code
}
)
# Choice of input method for initial/boundary conditions
# version for real tensor
input_choice_real_dim_tensor =
(
## Constant tensor
element constant {
real_dim_tensor
}|
## Python command prescribing tensor input.
##
## An example that returns the three-dimensional identity:
##
## def val(X, t):
## return [[1, 0, 0],
## [0, 1, 0],
## [0, 0, 1]]
element python {
python_code
}
)
prognostic_velocity_field =
(
velocity_equation_choice,
## Spatial discretisation options
element spatial_discretisation {
(
## A new version of continuous galerkin assembly.
element continuous_galerkin {
## Stabilisation options for the galerkin discretisation
element stabilisation{
(
no_stabilisation|
su_stabilisation|
supg_stabilisation
)
},
## Discretisation options for the mass terms in the velocity equation.
element mass_terms{
## Lump the mass matrix - currently required if solving for pressure
element lump_mass_matrix {
## Lump on the submesh.
## This only works for simplex meshes and is only
## strictly valid on 2d meshes.
element use_submesh {
empty
}?
}?,
## Remove the mass terms from the equation.
element exclude_mass_terms {
empty
}?
},
## Discretisation options for the advection terms in the velocity equation.
element advection_terms {
## Integrate the advection terms of the momentum equation by parts.
## This allows for the imposition of weak boundary conditions.
## If activated the element advection matrix takes the form:
## / /
## - | (grad N_A dot nu) N_B rho dV - (1. - beta) | N_A ( div nu ) N_B rho dV
## / /
## otherwise it takes the standard form:
## / /
## | N_A (nu dot grad N_B) rho dV + beta | N_A ( div nu ) N_B rho dV
## / /
## where beta is set in conservative_advection, N is
## a shape function and nu is the relative nonlinear
## velocity.
element integrate_advection_by_parts {
empty
}?,
## Remove the advection terms (u.grad u rho + beta
## div u rho u) from the equation.
## This overrides any other advection term options
## (including conservative_advection below).
element exclude_advection_terms {
empty
}?
},
## Discretisation options for the stress terms in the velocity equation.
element stress_terms {
(
## Use tensor form of the stress terms.
##
## This is only valid for incompressible
## simulations as it is basically a simplication
## of full stress form when divergent elements can
## be cancelled out.
##
## ONLY DIAGONAL COMPONENTS OF VISCOSITY CAN BE
## SET (i.e. either isotropic or
## anistropic_symmetric with zero off diagonals
## tensors).
##
## If diagonal components differ from each other
## this must be for numerical reasons (i.e. not
## physical variations in viscosity otherwise
## simplification is not valid).
##
## If activated, the dim x dim (in this example
## 3d) stress matrix takes the form:
##
## / mu_xx*N_a,x*N_b,x + mu_yy*N_a,y*N_b,y + mu_zz*N_a,z*N_b,z
## | 0 ...
## \ 0
##
## 0
## ... mu_xx*N_a,x*N_b,x + mu_yy*N_a,y*N_b,y + mu_zz*N_a,z*N_b,z ...
## 0
##
## 0 \
## ... 0 |
## mu_xx*N_a,x*N_b,x + mu_yy*N_a,y*N_b,y + mu_zz*N_a,z*N_b,z /
##
## which is derived from b_a^T c b_b, where:
##
## b_a = / N_a,x \ c = / mu_xx 0 0 \
## | N_a,y | | 0 mu_yy 0 |
## \ N_a,z / \ 0 0 mu_zz /
##
## where N_a and N_b are shape functions of the
## ath and bth node respectively and mu are the
## components of the viscosity tensor.
element tensor_form {
empty
}|
## Use full stress form of the stress tensor.
##
## This is required if performing a compressible simulation.
##
## If using a viscosity ALL COMPONENTS OF
## VISCOSITY MUST BE SET (i.e. either
## anisotropic_symmetric or
## anisotropic_asymmetric tensors).
##
## If components differ form each other this must
## be for numerical reasons (i.e. not physical
## variations in viscosity).
##
## If activated, the dim x dim (in this example
## 3d) stress matrix takes the form:
##
## / 2*N_a,x*N_b,x*mu_xx + N_a,y*N_b,y*mu_yy + N_a,z*N_b,z*mu_zz - 2/3*N_a,x*N_b,x*mu_xx
## | N_a,x*N_b,y*mu_xy - 2/3*N_a,y*N_b,x*mu_yx ...
## \ N_a,x*N_b,z*mu_xz - 2/3*N_a,z*N_b,x*mu_zx
##
## N_a,y*N_b,x*mu_xy - 2/3*N_a,x*N_b,y*mu_xy
## ... N_a,x*N_b,x*mu_xx + 2*N_a,y*N_b,y*mu_yy + N_a,z*N_b,z*mu_zz - 2/3*N_a,y*N_b,y*mu_yy ...
## N_a,y*N_b,z*mu_yz - 2/3*N_a,z*N_b,y*mu_zy
##
## N_a,z*N_b,x*mu_xz - 2/3*N_a,x*N_b,z*mu_xz \
## ... N_a,z*N_b,y*mu_yz - 2/3*N_a,y*N_b,z*mu_yz |
## N_a,x*N_b,x*mu_xx + N_a,y*N_b,y*mu_yy + 2*N_a,z*N_b,z*mu_zz - 2/3*N_a,z*N_b,z*mu_zz /
##
## which is derived from b_a^T c b_b, where:
##
## b_a = / N_a,x 0 0 \ c = / 4/3*mu_xx -2/3*mu_xy -2/3*mu_xz 0 0 0 \
## | 0 N_a,y 0 | | -2/3*mu_yx 4/3*mu_yy -2/3*mu_yz 0 0 0 |
## | 0 0 N_a,z | | -2/3*mu_zx -2/3*mu_zy 4/3*mu_zz 0 0 0 |
## | N_a,y N_a,x 0 | | 0 0 0 mu_xy 0 0 |
## | N_a,z 0 N_a,x | | 0 0 0 0 mu_xz 0 |
## \ 0 N_a,z N_a,y / \ 0 0 0 0 0 mu_yz /
##
## where N_a and N_b are shape functions of the ath and bth node respectively and mu are the components of the viscosity tensor.
element stress_form {
empty
}
)
},
element les_model {
## suggested value 0.1
element smagorinsky_coefficient {
real
},
element form {
element tensor_form{empty}
|
element stress_form{empty}
},
element order {
element second_order{empty}
|
element fourth_order{empty}
}
}?
}|
## Discontinuous galerkin formulation. This causes Momentum_DG to be
## called instead of diff3d. Confusingly it is not necessary to provide
## a discontinuous velocity field for this to work!
element discontinuous_galerkin {
## Discretisation options for the mass terms in the velocity equation.
element mass_terms{
## Lump the mass matrix
element lump_mass_matrix {
empty
}?
}?,
element viscosity_scheme {
(
## Classical scheme from Bassi and Rebay
## (JCP 131 267-179 1997)
element bassi_rebay {
empty
}|
## Scheme in which upwinding is applied in
## alternating directions. Devised by C.Pain.
element arbitrary_upwind {
empty
}|
## Classical interior penalty scheme
## see, e.g., SIAM Journal on Numerical Analysis
## Vol. 39, No. 5 (2002), pp. 1749-1779
element interior_penalty {
## Penalty_parameter
## The penalty term Int [u][v] dS on element boundaries
## is scaled by C = C_0 h**p
## This option specifies the C_0
## There is a theoretical lower bound for
## stability and hence convergence
element penalty_parameter {
real
},
## Penalty_parameter
## The penalty term Int [u][v] dS on element boundaries
## is scaled by C = C_0 h**p
## This option specifies p
## Theoretically p=-1 is required for linear elements
element edge_length_power {
real
},
## Switch on debugging output
element debug {
## Bound for testing element gradient matrix
element gradient_test_bound {
real
},
## Remove the elemental integral:
## Int grad u.kappa.grad v dV
element remove_element_integral {
empty
}?,
## Remove the primal fluxes
element remove_primal_fluxes {
empty
}?,
## Remove the penalty fluxes
element remove_penalty_fluxes {
empty
}?
}?
}
)
},
element advection_scheme {
(
## Straightforward upwinding of the nonlinear velocity.
element upwind {
empty
}|
## Disable advection
element none {
empty
}
),
## Integrate the advection terms of the momentum equation by parts.
##
## Integrating the advection term by parts is
## necessary for a discontinuous
## galerkin discretisation however it is possible to
## select how many times the
## integration by parts is performed.
## Twice is the norm.
element integrate_advection_by_parts {
(
## If activated the element advection matrix takes the form:
## / /
## | N_A (nu dot grad N_B) dV + beta | N_A ( div nu ) N_B dV
## / /
## / /
## + I | N_A_i (nu dot n) N_B_o ds + [(1-I) - 1] | N_A_i (nu dot n) N_B_i ds
## / /
## where beta is set in conservative_advection,
## N is a shape function (uppercase
## subscripts indicate nodes A or B while
## lowercase subscripts indicate inner or outer
## faces i and o respectively), nu is the
## nonlinear velocity and n is the outward
## pointing normal from the element.
element twice {
empty
}|
## If activated the element advection matrix takes the form:
## / /
## - | (grad N_A dot nu) N_B dV - (1. - beta) | N_A ( div nu ) N_B dV
## / /
## / /
## + I | N_A_i (nu dot n) N_B_o ds + (1-I) | N_A_i (nu dot n) N_B_i ds
## / /
## where beta is set in conservative_advection,
## N is a shape function (uppercase
## subscripts indicate nodes A or B while
## lowercase subscripts indicate inner or outer
## faces i and o respectively), nu is the
## nonlinear velocity and n is the outward
## pointing normal from the element.
element once {
empty
}
)
},
## If activated the conservation term:
## /
## | N_A ( div nu ) N_B dV
## /
## is integrated_by_parts such that the element
## advection matrix becomes:
## / /
## - beta | (grad N_A dot nu) N_B dV + (1. - beta) | N_A (nu dot grad N_B) dV
## / /
## / /
## + I | N_A_i (nu dot n) N_B_o ds + [(1-I) - (1-beta)] | N_A_i (nu dot n) N_B_i ds
## / /
## where beta is set in conservative_advection, N is
## a shape function (uppercase
## subscripts indicate nodes A or B while lowercase
## subscripts indicate inner or outer
## faces i and o respectively), nu is the nonlinear
## velocity and n is the outward pointing normal
## from the element.
## This is invariant regardless of whether the main
## advection term is integrated by parts once or
## twice.
element integrate_conservation_term_by_parts {
empty
}?
}
}|
## Use the legacy finite element discretisation
element legacy_continuous_galerkin {
(
## balancing diffusion based on (x,y) space.
element balancing_diffusion_x {
empty
}|
## Laxwendrof balancing diffusion.
element laxwendroff_balancing_diffusion {
empty
}|
## (x,y,t) -balancing diffusion.
element balancing_diffusion_xt {
empty
}|
## No balancing diffusion.
element no_balancing_diffusion {
empty
}|
## nonlinear streamline and cross stream diffusion.
element nonlinear_streamline_w_crossstream_diffusion {
empty
}|
## nonlinear upwind in steapest direction.
element nonlinear_upwind_steepest {
empty
}|
## nonlinear streamline+ cross stream diffusion(but restricted)
element nonlinear_streamline_w_restricted_crossstream_diffusion {
empty
}|
## LES option using constant length scale.
element les_constant_length_scale {
empty
}|
## LES option using isotropic length scale.
element les_isotropic_length_scale {
empty
}|
## LES option which uses no balancing diffusion.
element les_no_balancing_diffusion {
empty
}|
## LES option which uses no balancing diffusion.
element les_no_balancing_diffusion_2 {
empty
}|
## same as 45 but with 4th order dissipation.
element les_no_balancing_diffusion_fourth_order_dissipation {
empty
}|
## LES but in tensor form like hart3d
element les_tensor_form {
empty
}|
## LES 4th order version of 47
element les_fourth_order {
empty
}|
## NO balancing diffusion(DISOPT=4)and take out non-linear terms.
element no_balancing_diffusion_remove_nonlinear_terms {
empty
}
),
## Lump the mass matrix in the momentum equation
element lump_mass_matrix {
empty
}?
}|
element legacy_discretisation {
## Legacy discretisation option (DISOPT)
##
## From diff3d comments (other possibilities are known to exist!):
## ==============================================================
## DISOPT=1 - balancing diffusion based on (x,y) space.
## DISOPT=2 - Laxwendrof balancing diffusion.
## DISOPT=3 - (x,y,t) -balancing diffusion.
## DISOPT=4 - No balancing diffusion.
## DISOPT=5 - nonlinear streamline and cross stream diffusion.
## DISOPT=6 - nonlinear upwind in steapest direction.
## DISOPT=7 - nonlinear streamline+ cross stream diffusion(but restricted)
##
## DISOPT=42- LES option using constant length scale.
## DISOPT=43- LES option using isotropic length scale.
## DISOPT=44- LES option which uses no balancing diffusion.
## DISOPT=45- LES option which uses no balancing diffusion.
## DISOPT=46- same as 45 but with 4th order dissipation.
## DISOPT=47 -LES but in tensor form like hart3d.
## DISOPT=48 -LES 4th order version of 47.
##
## DISOPT=125 - NO balancing diffusion(DISOPT=4)and take out non-linear terms.
element legacy_disopt {
integer
},
## Lump the mass matrix in the momentum equation
element legacy_mlump {
empty
}?,
## Legacy discretisation option for control volume advection of momentum (DISOPT)
## Set to 0 if not activated
## Method for face-value est. Time-stepping Limiting
## ------------------------------------------------------------------
## =0 1st order in space Theta=specified UNIVERSAL
## =1 1st order in space Theta=non-linear UNIVERSAL
## =2 Trapazoidal rule in space Theta=specified UNIVERSAL
## =3 Trapazoidal rule in space Theta=non-linear UNIVERSAL
## =4 Finite elements in space Theta=specified UNIVERSAL
## =5 Finite elements in space Theta=non-linear UNIVERSAL
## =6 Finite elements in space Theta=specified NONE
## =7 Finite elements in space Theta=non-linear NONE
## =8 Finite elements in space Theta=specified DOWNWIND+
## =9 Finite elements in space Theta=non-linear DOWNWIND+
element legacy_ndisop {
integer
}?
}
),
## Conservative discretisation of momentum equations
## BETA=1. -- conservative (divergence form)
## BETA=0. -- non-conservative
## 0. < BETA < 1.
element conservative_advection {
real
},
inner_element_velocity?
},
## Temporal discretisation options
element temporal_discretisation {
## Implicit/explicit control (THETA)
## =0. -- explicit
## =0.5 -- Crank-Nicolson
## =1. -- implicit
element theta {
real
},
## Non-linear relaxation term
## =0. -- previous timestep velocity solution used in non-linear terms of momentum equations
## =1. -- previous iteration velocity solution used in non-linear terms of momentum equations
## 0. < ITHETA < 1.
element relaxation {
real
},
element discontinuous_galerkin {
(
## Use timestep subcycling to solve this equation.
## Specify the number of subcycles.
## This only works for pure control volume discretisations.
element number_advection_subcycles {
integer
}
)?
}?
},
## Solver
element solver {
linear_solver_options_asym
},
constitutive_laws,
(
## Initial condition for WholeMesh
##
## Only specify one condition if not using mesh regions.
## Otherwise select other initial_condition option, specify region_ids
## and distinct names. Then add extra intial conditions for other regions.
element initial_condition {
attribute name { "WholeMesh" },
input_choice_initial_condition_vector
}|
## Multiple initial_conditions are allowed if specifying
## different values in different
## regions of the mesh (defined by region_ids). In this case
## each initial_condition
## requires a distinct name for the options dictionary.
element initial_condition {
attribute name { string },
region_ids,
input_choice_initial_condition_vector
}
)+,
## Boundary conditions
element boundary_conditions {