forked from FluidityProject/fluidity
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfluidity_options.rng
8810 lines (8563 loc) · 344 KB
/
fluidity_options.rng
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0" xmlns="http://relaxng.org/ns/structure/1.0" datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
<include href="spud_base.rng"/>
<include href="adaptivity_options.rng"/>
<include href="diagnostic_algorithms.rng"/>
<include href="input_output.rng"/>
<include href="solvers.rng"/>
<include href="stabilisation.rng"/>
<include href="mesh_options.rng"/>
<include href="physical_parameters.rng"/>
<include href="prognostic_field_options.rng"/>
<include href="prescribed_field_options.rng"/>
<include href="spatial_discretisation.rng"/>
<include href="temporal_discretisation.rng"/>
<include href="flredecomp.rng"/>
<include href="multiphase_interaction.rng"/>
<include href="equation_of_state.rng"/>
<start>
<element name="fluidity_options">
<a:documentation>The root node of the options dictionary.</a:documentation>
<ref name="comment"/>
<element name="simulation_name">
<a:documentation>Model output files are named according to the simulation
name, e.g. [simulation_name]_0.vtu. Non-standard
characters in the simulation name should be avoided.</a:documentation>
<ref name="anystring"/>
</element>
<element name="problem_type">
<a:documentation>Option problem_type does not change the tree. It is just used for options checking.</a:documentation>
<element name="string_value">
<!--
Lines is a hint to the gui about the size of the text box.
It is not an enforced limit on string length.
-->
<attribute name="lines">
<value>1</value>
</attribute>
<choice>
<value>fluids</value>
<value>oceans</value>
<value>multimaterial</value>
<value>stokes</value>
<value>large_scale_ocean_options</value>
<value>foams</value>
<value>multiphase</value>
</choice>
</element>
<ref name="comment"/>
</element>
<ref name="geometry"/>
<element name="io">
<a:documentation>Input/output options</a:documentation>
<element name="dump_format">
<a:documentation>Format for dump files. Only vtk for now.</a:documentation>
<element name="string_value">
<value>vtk</value>
</element>
</element>
<choice>
<element name="dump_period">
<a:documentation>Period between dumps in time units.
Specifies the period between each dump of the solution to disk.
A value of 0.0 indicates that there would be a dump at every timestep.</a:documentation>
<choice>
<element name="constant">
<ref name="real"/>
</element>
<element name="python">
<a:documentation>Python function prescribing real input. Functions should be of the form:
def val(t):
# Function code
return # Return value
</a:documentation>
<ref name="python_code"/>
</element>
</choice>
</element>
<element name="dump_period_in_timesteps">
<a:documentation>Dump period, in timesteps.
Specifies the number of timesteps between each dump of the solution to disk.
A value of 0 indicates a dump at every timestep.</a:documentation>
<choice>
<element name="constant">
<ref name="integer"/>
</element>
<element name="python">
<a:documentation>Python function prescribing integer input. Functions should be of the form:
def val(t):
# Function code
return # Return value
</a:documentation>
<ref name="python_code"/>
</element>
</choice>
</element>
</choice>
<optional>
<element name="disable_dump_at_start">
<a:documentation>Disable dump at simulation start</a:documentation>
<ref name="comment"/>
</element>
</optional>
<optional>
<element name="disable_dump_at_end">
<a:documentation>Disable dump at simulation end</a:documentation>
<ref name="comment"/>
</element>
</optional>
<optional>
<!-- every CPUDUM seconds write results to disc. -->
<element name="cpu_dump_period">
<a:documentation>This is usually disabled.</a:documentation>
<ref name="real"/>
</element>
</optional>
<optional>
<element name="wall_time_dump_period">
<a:documentation>The period between dumps in walltime seconds. This is usually disabled.</a:documentation>
<ref name="real"/>
</element>
</optional>
<optional>
<element name="max_dump_file_count">
<a:documentation>Number of dumps before we overwrite previous dumps.</a:documentation>
<ref name="integer"/>
</element>
</optional>
<choice>
<element name="output_mesh">
<a:documentation>The mesh on to which all the fields will be
interpolated for VTK output.</a:documentation>
<attribute name="name">
<value>VelocityMesh</value>
</attribute>
</element>
<element name="output_mesh">
<a:documentation>The mesh on to which all the fields will be
interpolated for VTK output.</a:documentation>
<attribute name="name">
<value>PressureMesh</value>
</attribute>
</element>
<element name="output_mesh">
<a:documentation>The mesh on to which all the fields will be
interpolated for VTK output.</a:documentation>
<attribute name="name">
<value>CoordinateMesh</value>
</attribute>
</element>
<element name="output_mesh">
<a:documentation>The mesh on to which all the fields will be
interpolated for VTK output.</a:documentation>
<attribute name="name">
<data type="string"/>
</attribute>
</element>
</choice>
<optional>
<element name="convergence">
<a:documentation>Options for convergence analysis.</a:documentation>
<optional>
<element name="convergence_file">
<a:documentation>Whether to enable the creation of a convergence
file, giving details of the convergence of each
field over the global nonlinear iteration loop.
The .convergence file is in the same format as the .stat file.</a:documentation>
<ref name="comment"/>
</element>
</optional>
<optional>
<element name="convergence_vtus">
<a:documentation>Write state to a vtu on every iteration.
This is a useful debugging tool if things are not converging.
To prevent an excessive number of files being accumulated previous
timestep files will be overwritten hence it is best to use
in conjunction with /timestepping/nonlinear_iterations/terminate_if_not_converged</a:documentation>
<ref name="comment"/>
</element>
</optional>
</element>
</optional>
<optional>
<element name="checkpointing">
<a:documentation>Whether to enable dumping of checkpointing output.
See http://amcg.ese.ic.ac.uk/index.php?title=Local:Checkpointing_from_new_options</a:documentation>
<element name="checkpoint_period_in_dumps">
<a:documentation>Checkpointing period, in dumps. Non-negative value
required. A value of zero indicates that checkpoints
should be created at every dump. If
/io/max_dumpfile_count is exceeded then earlier
checkpoints may be overwritten.</a:documentation>
<ref name="integer"/>
</element>
<optional>
<element name="checkpoint_at_start">
<a:documentation>Enable to checkpoint at simulation start.</a:documentation>
<ref name="comment"/>
</element>
</optional>
<optional>
<element name="checkpoint_at_end">
<a:documentation>Enable to force a checkpoint at simulation end.</a:documentation>
<ref name="comment"/>
</element>
</optional>
<ref name="comment"/>
</element>
</optional>
<element name="stat">
<a:documentation>Diagnostic output (.stat file) options</a:documentation>
<optional>
<element name="output_at_start">
<a:documentation>Enable to write diagnostic output at simulation start</a:documentation>
<ref name="comment"/>
</element>
</optional>
<optional>
<element name="output_before_adapts">
<a:documentation>Enable to write diagnostic output immediately before mesh adapts</a:documentation>
<ref name="comment"/>
</element>
</optional>
<optional>
<element name="output_after_adapts">
<a:documentation>Enable to write diagnostic output immediately after mesh adapts</a:documentation>
<ref name="comment"/>
</element>
</optional>
<ref name="comment"/>
</element>
<optional>
<element name="detectors">
<a:documentation>Specification of detectors. Note that when running in parallel the detector output is in binary format even if binary_output is not enabled. When running in serial, although the output is in principle still generated in ascii format if binary_output is not enabled, it is not certain that it is working well. Hence, it is recommended to enable binary_output and work with binary files. </a:documentation>
<zeroOrMore>
<choice>
<element name="static_detector">
<a:documentation>A single static detector</a:documentation>
<attribute name="name">
<data type="string"/>
</attribute>
<choice>
<element name="location">
<ref name="real_dim_vector"/>
</element>
<element name="from_checkpoint_file">
<a:documentation>File containing the detectors positions in binary form</a:documentation>
<attribute name="file_name">
<data type="string"/>
</attribute>
<element name="format">
<a:documentation>The format of the input file containing field data.</a:documentation>
<element name="string_value">
<value>binary</value>
</element>
</element>
</element>
</choice>
</element>
<element name="lagrangian_detector">
<a:documentation>A single lagrangian detector</a:documentation>
<attribute name="name">
<data type="string"/>
</attribute>
<choice>
<element name="location">
<a:documentation>This is the initial location of a detector that moves with the fluid velocity.</a:documentation>
<ref name="real_dim_vector"/>
</element>
<element name="from_checkpoint_file">
<a:documentation>File containing the detectors positions in binary form</a:documentation>
<attribute name="file_name">
<data type="string"/>
</attribute>
<element name="format">
<a:documentation>The format of the input file containing field data.</a:documentation>
<element name="string_value">
<value>binary</value>
</element>
</element>
</element>
</choice>
</element>
<element name="detector_array">
<a:documentation>Detectors with their locations specified via a python function or from a file. Allows detector arrays to be added.</a:documentation>
<attribute name="name">
<data type="string"/>
</attribute>
<element name="number_of_detectors">
<a:documentation>The number of detectors prescribed by the python function.</a:documentation>
<ref name="integer"/>
</element>
<choice>
<element name="static">
<a:documentation>Create fixed detectors.</a:documentation>
<empty/>
</element>
<element name="lagrangian">
<a:documentation>Create detectors which move with the fluid velocity.</a:documentation>
<empty/>
</element>
</choice>
<choice>
<element name="python">
<a:documentation>Python function prescribing dimensional vector input. Functions should be of the form:
def val(t):
# Function code
return # Return value
The return value must have length number_of_detectors.
*** IMPORTANT NOTE ***
The t argument is for future use only - currently detector locations are only set at simulation start.</a:documentation>
<ref name="python_code"/>
</element>
<element name="from_file">
<a:documentation>File containing the detectors positions in binary form</a:documentation>
<attribute name="file_name">
<data type="string"/>
</attribute>
<element name="format">
<a:documentation>The format of the input file containing field data.</a:documentation>
<element name="string_value">
<value>binary</value>
</element>
</element>
</element>
<element name="from_checkpoint_file">
<a:documentation>File containing the detectors positions in binary form</a:documentation>
<attribute name="file_name">
<data type="string"/>
</attribute>
<element name="format">
<a:documentation>The format of the input file containing field data.</a:documentation>
<element name="string_value">
<value>binary</value>
</element>
</element>
</element>
</choice>
</element>
</choice>
</zeroOrMore>
<choice>
<element name="fail_outside_domain">
<a:documentation>By default Fluidity will fail if a detector has left the domain.</a:documentation>
<empty/>
</element>
<element name="write_nan_outside_domain">
<a:documentation>Enable to write NaN values to detector output if a detector has left the domain.</a:documentation>
<empty/>
</element>
</choice>
<optional>
<element name="ascii_output">
<a:documentation>Enable to write detector output in ascii format. This output format will not work in parallel, if not enabled format defaults to binary.</a:documentation>
<ref name="comment"/>
</element>
</optional>
<optional>
<element name="move_with_mesh">
<a:documentation>Enable to let detectors move with the domain if mesh_movement is enabled.</a:documentation>
<empty/>
</element>
</optional>
<optional>
<ref name="lagrangian_timestepping"/>
</optional>
</element>
</optional>
<optional>
<element name="log_output">
<a:documentation>Options to create even more output in the logs:
Note that the main option to control the log output is given on the command line:
-v0 only output error and warnings
-v1 also give "navigational information", to indicate where in the code we currently are
-v2 also give any additional information (mins and maxes of fields, etc.)
</a:documentation>
<optional>
<element name="memory_diagnostics">
<a:documentation>Log all allocates and deallocates done for meshes, fields, sparsities and matrices.
NOTE: Requires -v2</a:documentation>
<empty/>
</element>
</optional>
</element>
</optional>
</element>
<element name="timestepping">
<a:documentation>Options dealing with time discretisation</a:documentation>
<element name="current_time">
<a:documentation>Current simulation time. At the start of the simulation this
is the start time.</a:documentation>
<ref name="real"/>
<optional>
<element name="time_units">
<a:documentation>The following excerpt from the Udunits
documentation explains the time unit encoding by
example:
The specification:
seconds since 1992-10-8 15:15:42.5 -6:00
indicates seconds since October 8th, 1992 at 3
hours, 15 minutes and 42.5 seconds in the afternoon
in the time zone which is six hours to the west of
Coordinated Universal Time (i.e. Mountain Daylight
Time). The time zone specification can also be
written without a colon using one or two-digits
(indicating hours) or three or four digits
(indicating hours and minutes).
Time units are particularly required in situations
where the problem (time-varying) boundary conditions
and/ initial conditions are a function of time as
defined by a calendar. Examples include atmospheric
forcing and climatology. The current time, specified
above, is zero at the reference data/time.</a:documentation>
<attribute name="date">
<data type="string"/>
</attribute>
</element>
</optional>
</element>
<element name="timestep">
<a:documentation>The time step size. If adaptive time stepping is used
then this is the initial time step size.</a:documentation>
<ref name="real"/>
</element>
<element name="finish_time">
<a:documentation>Simulation time at which the simulation should end.</a:documentation>
<ref name="real"/>
</element>
<optional>
<element name="final_timestep">
<a:documentation>Timestep after which the simulation should end.</a:documentation>
<ref name="integer"/>
</element>
</optional>
<optional>
<element name="cpu_time_limit">
<a:documentation>Maximum CPU time (in seconds) before the simulation terminates</a:documentation>
<ref name="real"/>
</element>
</optional>
<optional>
<element name="wall_time_limit">
<a:documentation>Maximum wall time (secs) taken up before
simulation terminates writing results to disc.
This is usually disabled.</a:documentation>
<ref name="real"/>
</element>
</optional>
<optional>
<element name="nonlinear_iterations">
<a:documentation>maximum number of non-linear iterations.
Manual suggests 2</a:documentation>
<ref name="integer"/>
<optional>
<element name="tolerance">
<a:documentation>tolerance for non-linear iteration.
Manual suggests 1.0E-12</a:documentation>
<ref name="real"/>
<choice>
<element name="infinity_norm">
<a:documentation>Select the norm with which you want the tolerance to be tested.
The infinity norm.</a:documentation>
<empty/>
</element>
<element name="l2_norm">
<a:documentation>Select the norm with which you want the tolerance to be tested.
The l2 norm.</a:documentation>
<empty/>
</element>
<element name="cv_l2_norm">
<a:documentation>Select the norm with which you want the tolerance to be tested.
The l2 norm evaluated on a control volume mesh.</a:documentation>
<empty/>
</element>
</choice>
</element>
</optional>
<optional>
<element name="terminate_if_not_converged">
<a:documentation>Terminate the simulation if the number of
nonlinear_iterations is reached
and the tolerance criterion is not met.
This is mostly useful as a debugging option if you
suspect the solution is not converging.</a:documentation>
<empty/>
</element>
</optional>
<optional>
<element name="nonlinear_iterations_at_adapt">
<a:documentation>Number of non-linear iterations for the first time step after adapting the mesh.
This option will work only if the mesh_adaptivity is switched on.</a:documentation>
<ref name="integer"/>
</element>
</optional>
</element>
</optional>
<optional>
<element name="adaptive_timestep">
<a:documentation>Vary the timestep according to the courant number.</a:documentation>
<element name="requested_cfl">
<a:documentation>The timestep will be adjusted (within the tolerance
and bounds specified) to target this courant
number. Timestep adapts occur at the end of each
timestep and after a mesh adapt.</a:documentation>
<ref name="real"/>
</element>
<ref name="timestep_cfl_number_options"/>
<optional>
<element name="minimum_timestep">
<a:documentation>Minimum time step size.
Manual suggests 0.0</a:documentation>
<optional>
<element name="terminate_if_reached">
<a:documentation>If enabled, signals model termination if a timestep less
than or equal to the minimum_timestep is requested. The
model will stop at the end of the timestep in order to
allow for the latest output to be written. </a:documentation>
<ref name="comment"/>
</element>
</optional>
<ref name="real"/>
</element>
</optional>
<optional>
<element name="maximum_timestep">
<a:documentation>Maximum time step size.
Manual suggests 1.E+10</a:documentation>
<ref name="real"/>
</element>
</optional>
<optional>
<element name="increase_tolerance">
<a:documentation>The maximum ratio by which the timestep is allowed
to increase in a timestep adapt. e.g., a value of
1.1 indicates that the timestep may be increased by
at most 10%.</a:documentation>
<ref name="real"/>
</element>
</optional>
<optional>
<element name="at_first_timestep">
<a:documentation>Specify whether you want to calculate a new timestep
at the first timestep or not.</a:documentation>
<empty/>
</element>
</optional>
</element>
</optional>
<optional>
<!-- Preprocessor legacy: STEDER = 0. is equivalent to inactive. -->
<element name="steady_state">
<a:documentation>Activate if you want to terminate the simulation once a
steady state is reached.
Enable/disable fields in this check under each field in
steady_state options.</a:documentation>
<element name="tolerance">
<a:documentation>Enter the tolerance to which you want a steady state to be judged.</a:documentation>
<ref name="real"/>
<choice>
<element name="infinity_norm">
<a:documentation>Select the norm with which you want the tolerance to be tested.
The infinity norm.</a:documentation>
<empty/>
</element>
<element name="l2_norm">
<a:documentation>Select the norm with which you want the tolerance to be tested.
The l2 norm.</a:documentation>
<empty/>
</element>
<element name="cv_l2_norm">
<a:documentation>Select the norm with which you want the tolerance to be tested.
The l2 norm evaluated on a control volume mesh.</a:documentation>
<empty/>
</element>
</choice>
</element>
<optional>
<element name="acceleration_form">
<a:documentation>If activated compare the above tolerance to the rate
of change of the fields. Otherwise compare it
directly to the change in the field.</a:documentation>
<empty/>
</element>
</optional>
<optional>
<element name="steady_state_file">
<a:documentation>Write out the changes in the tested fields to a .steady_state
file.</a:documentation>
<choice>
<element name="binary_output">
<a:documentation>Write steady state output in binary format</a:documentation>
<ref name="comment"/>
</element>
<element name="plain_text_output">
<a:documentation>Write steady state output in plain text format</a:documentation>
<ref name="comment"/>
</element>
</choice>
<ref name="comment"/>
</element>
</optional>
</element>
</optional>
</element>
<optional>
<ref name="physical_parameter_options"/>
</optional>
<oneOrMore>
<element name="material_phase">
<a:documentation>The material or phase options</a:documentation>
<attribute name="name">
<data type="string"/>
</attribute>
<optional>
<ref name="equation_of_state_options"/>
</optional>
<optional>
<element name="subgridscale_parameterisations">
<a:documentation>Subgridscale parameterisations</a:documentation>
<optional>
<element name="LANS">
<a:documentation>Lagrangian-averaged Navier-Stokes equations </a:documentation>
<choice>
<element name="alpha_isotropic_homogeneous">
<a:documentation>smoothing length specified as isotropic homogeneous</a:documentation>
<ref name="real"/>
</element>
<element name="alpha_anisotropic_homogeneous_cartesian">
<ref name="real_dim_symmetric_tensor"/>
</element>
</choice>
<!--
(
element leray {
empty
}|
element LANS_momentum_form {
empty
}|
element LANS_stress_form {
empty
}
)
-->
</element>
</optional>
<optional>
<element name="GLS">
<a:documentation>This is the generic length scale (vertical turbulence mixed layer) model,
based here on Warner et al 2005, Ocean Modelling 8:81-113,
which is itself based on the works of Umlauf and Burchard 2003.
The GLS model encodes four individual turbulence closure models which can be chosen via 'option' below.
You will need to make sure that DistanceToTop and DistanceToBottom fields (under geometry/ocean_boundaries)
are switched on, as well as PerturbationDensity.</a:documentation>
<element name="option">
<a:documentation>The base GLS option:
1. k-kl which is a variant of Mellor-Yamada 2.5
2. k-epsilon
3. k-omega
4. 'gen' from Warner et al 2005
k-epsilon is recommended.</a:documentation>
<element name="string_value">
<choice>
<value>k-kl</value>
<value>k-epsilon</value>
<value>k-omega</value>
<value>gen</value>
</choice>
</element>
</element>
<element name="stability_function">
<a:documentation>The stability function choice:
1. KanthaClayson-94 which corresponds to Kantha and Clayson 1994
2. Galperin-88 which corresponds to Galperin et al 1988
3. Canuto-01-A which corresponds to choice A from Canuto et al 2001
4. Canuto-01-B which corresponds to choice B from Canuto et al 2001
Canuto A or B are recommended.</a:documentation>
<element name="string_value">
<choice>
<value>KanthaClayson-94</value>
<value>GibsonLaunder-78</value>
<value>Canuto-01-A</value>
<value>Canuto-01-B</value>
</choice>
</element>
</element>
<optional>
<element name="wall_function">
<a:documentation>The wall function choice:
1. None - pick this unless you're using k-kl
2. Mellor and Yamada (1980) - parabolic shape
3. Burchard (1998) - symmetric linear shape
4. Burchard (2001) - Used for infinitely deep basins
5. Blumberg et al (1992) - open channel flow
See manual for equations.</a:documentation>
<element name="string_value">
<choice>
<value>none</value>
<value>MellorYamda</value>
<value>Burchard98</value>
<value>Burchard01</value>
<value>Blumberg</value>
</choice>
</element>
</element>
</optional>
<optional>
<element name="smooth_buoyancy">
<a:documentation>Smooth buoyancy frequency before using it?</a:documentation>
<empty/>
</element>
</optional>
<optional>
<element name="smooth_shear">
<a:documentation>Smooth velocity shear before using it?</a:documentation>
<empty/>
</element>
</optional>
<optional>
<element name="calculate_boundaries">
<a:documentation>Do you want the boundary conditions to be set automatically?
Make sure the ocean geometry settings are enabled for this option</a:documentation>
<element name="string_value">
<choice>
<value>neumann</value>
<value>dirichlet</value>
</choice>
</element>
<element name="top_surface_ids">
<ref name="integer_vector"/>
</element>
<element name="bottom_surface_ids">
<ref name="integer_vector"/>
</element>
</element>
</optional>
<optional>
<element name="relax_diffusivity">
<a:documentation>Perform relaxation of the diffusivity and viscosity in the GLS model.
Value should be >=0 and < 1. 0 is no relaxation (i.e. always use the
most up-to-date value) and 0.9 would represent making the current value
be 0.9*old_value + 0.1*new_value. Default is 0.0
If being used with adaptivity, ensure you switch on interpolation of the
GLSVerticalDiffusivity and GLSVerticalViscosity fields. You will seg fault
otherwise.</a:documentation>
<ref name="real"/>
</element>
</optional>
<optional>
<element name="ocean_parameterisation">
<a:documentation>Add extra parameterisation for internal wave breaking at base of MLD. This
is based on the same parameterisation in NEMO and smooths the TKE down
the water column based on an exponential function
Set the two parameters: % of TKE to smooth down and length scale to do this over</a:documentation>
<element name="lengthscale">
<ref name="real"/>
</element>
<element name="percentage">
<ref name="real"/>
</element>
</element>
</optional>
<element name="scalar_field">
<a:documentation>Turbulent kinetic energy. Make sure that the Diffusivity tensor field in here is set to diagnostic/internal.</a:documentation>
<attribute name="rank">
<value>0</value>
</attribute>
<attribute name="name">
<value>GLSTurbulentKineticEnergy</value>
</attribute>
<choice>
<element name="prognostic">
<ref name="velocity_mesh_choice"/>
<ref name="prognostic_scalar_field"/>
<element name="minimum_value">
<a:documentation>Minimum value of TKE in m2s2. A typical value will be around 1e-6</a:documentation>
<ref name="real"/>
</element>
</element>
<element name="aliased">
<ref name="generic_aliased_field"/>
</element>
</choice>
</element>
<element name="scalar_field">
<a:documentation>Generic second equation used in GLS.
Make sure that the Diffusivity tensor field in here is set to diagnostic/internal.</a:documentation>
<attribute name="rank">
<value>0</value>
</attribute>
<attribute name="name">
<value>GLSGenericSecondQuantity</value>
</attribute>
<choice>
<element name="prognostic">
<ref name="velocity_mesh_choice"/>
<ref name="prognostic_scalar_field"/>
</element>
<element name="aliased">
<ref name="generic_aliased_field"/>
</element>
</choice>
</element>
<element name="tensor_field">
<a:documentation>Background viscosity</a:documentation>
<attribute name="rank">
<value>2</value>
</attribute>
<attribute name="name">
<value>GLSBackgroundViscosity</value>
</attribute>
<choice>
<element name="prescribed">
<ref name="mesh_choice"/>
<ref name="prescribed_tensor_field"/>
</element>
<element name="diagnostic">
<ref name="mesh_choice"/>
<ref name="sediment_concentration_dependent_viscosity_algorithm"/>
<ref name="diagnostic_tensor_field"/>
</element>
</choice>
</element>
<element name="tensor_field">
<a:documentation>Background diffusivity</a:documentation>
<attribute name="rank">
<value>2</value>
</attribute>
<attribute name="name">
<value>GLSBackgroundDiffusivity</value>
</attribute>
<element name="prescribed">
<ref name="mesh_choice"/>
<ref name="prescribed_tensor_field"/>
</element>
</element>
<element name="tensor_field">
<a:documentation>Eddy viscosity K_M</a:documentation>
<attribute name="rank">
<value>2</value>
</attribute>
<attribute name="name">
<value>GLSEddyViscosityKM</value>
</attribute>
<choice>
<element name="diagnostic">
<ref name="internal_algorithm"/>
<ref name="velocity_mesh_choice"/>
<ref name="diagnostic_scalar_field"/>
</element>
<element name="aliased">
<ref name="generic_aliased_field"/>
</element>
</choice>
</element>
<element name="tensor_field">
<a:documentation>Eddy diffusivity K_H</a:documentation>
<attribute name="rank">
<value>2</value>
</attribute>
<attribute name="name">
<value>GLSEddyDiffusivityKH</value>
</attribute>
<choice>
<element name="diagnostic">
<ref name="internal_algorithm"/>
<ref name="velocity_mesh_choice"/>
<ref name="diagnostic_scalar_field"/>
</element>
<element name="aliased">
<ref name="generic_aliased_field"/>
</element>
</choice>
</element>
<optional>
<element name="scalar_field">
<a:documentation>Length scale (a diagnostic with GLS)</a:documentation>
<attribute name="rank">
<value>0</value>
</attribute>
<attribute name="name">
<value>GLSLengthScale</value>
</attribute>
<choice>
<element name="diagnostic">
<ref name="internal_algorithm"/>
<ref name="velocity_mesh_choice"/>
<ref name="diagnostic_scalar_field"/>
</element>
<element name="aliased">
<ref name="generic_aliased_field"/>
</element>
</choice>
</element>
</optional>
<optional>
<element name="scalar_field">
<a:documentation>Unedited TKE. The TKE filed has the upper and lower surfaces
altered with Dirichlet conditions for ouput. This is the
unedited surface.</a:documentation>
<attribute name="rank">
<value>0</value>
</attribute>
<attribute name="name">
<value>GLSTurbulentKineticEnergyOriginal</value>
</attribute>
<choice>
<element name="diagnostic">
<ref name="internal_algorithm"/>
<ref name="velocity_mesh_choice"/>
<ref name="diagnostic_scalar_field"/>
</element>
<element name="aliased">
<ref name="generic_aliased_field"/>
</element>
</choice>
</element>
</optional>
<optional>
<element name="scalar_field">
<a:documentation>Buoyancy frequency</a:documentation>
<attribute name="rank">
<value>0</value>
</attribute>
<attribute name="name">
<value>GLSBuoyancyFrequency</value>
</attribute>
<choice>
<element name="diagnostic">
<ref name="internal_algorithm"/>
<ref name="velocity_mesh_choice"/>
<ref name="diagnostic_scalar_field"/>
</element>
<element name="aliased">
<ref name="generic_aliased_field"/>
</element>
</choice>
</element>
</optional>
<optional>
<element name="scalar_field">
<a:documentation>Velocity shear</a:documentation>
<attribute name="rank">
<value>0</value>
</attribute>
<attribute name="name">
<value>GLSVelocityShear</value>
</attribute>
<choice>
<element name="diagnostic">
<ref name="internal_algorithm"/>
<ref name="velocity_mesh_choice"/>
<ref name="diagnostic_scalar_field"/>
</element>
<element name="aliased">
<ref name="generic_aliased_field"/>
</element>
</choice>
</element>
</optional>
<optional>
<element name="scalar_field">
<a:documentation>Shear production P</a:documentation>
<attribute name="rank">
<value>0</value>
</attribute>