-
Notifications
You must be signed in to change notification settings - Fork 1
/
unit_test.py
69 lines (56 loc) · 2.24 KB
/
unit_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import torch, time
import chamfer2D.dist_chamfer_2D
import chamfer3D.dist_chamfer_3D
import chamfer5D.dist_chamfer_5D
import chamfer_python
cham2D = chamfer2D.dist_chamfer_2D.chamfer_2DDist()
cham3D = chamfer3D.dist_chamfer_3D.chamfer_3DDist()
cham5D = chamfer5D.dist_chamfer_5D.chamfer_5DDist()
from torch.autograd import Variable
from fscore import fscore
def test_chamfer(distChamfer, dim):
points1 = torch.rand(4, 100, dim).cuda()
points2 = torch.rand(4, 200, dim, requires_grad=True).cuda()
dist1, dist2, idx1, idx2= distChamfer(points1, points2)
loss = torch.sum(dist1)
loss.backward()
mydist1, mydist2, myidx1, myidx2 = chamfer_python.distChamfer(points1, points2)
d1 = (dist1 - mydist1) ** 2
d2 = (dist2 - mydist2) ** 2
assert (
torch.mean(d1) + torch.mean(d2) < 0.00000001
), "chamfer cuda and chamfer normal are not giving the same results"
xd1 = idx1 - myidx1
xd2 = idx2 - myidx2
assert (
torch.norm(xd1.float()) + torch.norm(xd2.float()) == 0
), "chamfer cuda and chamfer normal are not giving the same results"
print(f"fscore :", fscore(dist1, dist2))
print("Unit test passed")
def timings(distChamfer, dim):
p1 = torch.rand(32, 2000, dim).cuda()
p2 = torch.rand(32, 1000, dim).cuda()
print("Timings : Start CUDA version")
start = time.time()
num_it = 100
for i in range(num_it):
points1 = Variable(p1, requires_grad=True)
points2 = Variable(p2)
mydist1, mydist2, idx1, idx2 = distChamfer(points1, points2)
loss = torch.sum(mydist1)
loss.backward()
print(f"Ellapsed time forward backward is {(time.time() - start)/num_it} seconds.")
print("Timings : Start Pythonic version")
start = time.time()
for i in range(num_it):
points1 = Variable(p1, requires_grad=True)
points2 = Variable(p2)
mydist1, mydist2, idx1, idx2 = chamfer_python.distChamfer(points1, points2)
loss = torch.sum(mydist1)
loss.backward()
print(f"Ellapsed time forward backward is {(time.time() - start)/num_it} seconds.")
dims = [2,3,5]
for i,cham in enumerate([cham2D, cham3D, cham5D]):
print(f"testing Chamfer {dims[i]}D")
test_chamfer(cham, dims[i])
timings(cham, dims[i])