Skip to content

Commit c49bfad

Browse files
committed
Merge branch 'master' into develop
2 parents b65aebe + b70d5db commit c49bfad

File tree

6 files changed

+90
-80
lines changed

6 files changed

+90
-80
lines changed

docs/sphinx/en/source/tutorial/other_models.rst

Lines changed: 36 additions & 32 deletions
Original file line numberDiff line numberDiff line change
@@ -37,7 +37,7 @@ First, prepare input_nequip.toml and set the parameters required to run NequIP.
3737
Below, we extract [sampling.solver] and [train] with changes from the aenet input.
3838

3939
.. code-block:: toml
40-
40+
4141
[sampling.solver]
4242
type = 'nequip'
4343
base_input_dir = './baseinput_nequip'
@@ -62,37 +62,40 @@ Also, create the NequIP input file ``input.yaml`` in the ``nequip_train_input/tr
6262
dataset_seed: 456
6363
6464
# network
65-
num_basis: 8
66-
BesselBasis_trainable: true
65+
AllegroBesselBasis_trainable: true
66+
bessel_frequency_cutoff: 4
6767
PolynomialCutoff_p: 6
6868
l_max: 1
6969
r_max: 8.0
70-
parity: true
71-
num_layers: 3
72-
num_features: 16
73-
74-
nonlinearity_type: gate
75-
76-
nonlinearity_scalars:
77-
e: silu
78-
o: tanh
70+
parity: o3_full
71+
num_layers: 2
7972
80-
nonlinearity_gates:
81-
e: silu
82-
o: tanh
73+
num_tensor_features: 16
74+
tensors_mixing_mode: p
75+
two_body_latent_mlp_latent_dimensions: [32, 64]
76+
two_body_latent_mlp_nonlinearity: silu
77+
latent_mlp_latent_dimensions: [64, 64]
78+
latent_mlp_nonlinearity: silu
79+
latent_mlp_initialization: uniform
80+
latent_resnet: true
81+
env_embed_mlp_latent_dimensions: []
82+
env_embed_mlp_nonlinearity: null
83+
env_embed_mlp_initialization: uniform
84+
edge_eng_mlp_latent_dimensions: [16]
85+
edge_eng_mlp_nonlinearity: null
86+
edge_eng_mlp_initialization: uniform
8387
8488
model_builders:
85-
- SimpleIrrepsConfig
86-
- EnergyModel
87-
- PerSpeciesRescale
88-
- RescaleEnergyEtc
89+
- allegro.model.Allegro
90+
- PerSpeciesRescale
91+
- RescaleEnergyEtc
8992
9093
9194
dataset: ase
9295
dataset_file_name: structure.xyz
9396
chemical_symbols:
94-
- Mg
95-
- Al
97+
- Mg
98+
- Al
9699
97100
# logging
98101
wandb: false
@@ -113,6 +116,7 @@ Also, create the NequIP input file ``input.yaml`` in the ``nequip_train_input/tr
113116
# loss function
114117
loss_coeffs: total_energy
115118
119+
116120
The procedure of model learning and sampling is the same as aenet.
117121

118122

@@ -140,7 +144,7 @@ First, prepare input_allegro.toml and set the parameters required to run Allegro
140144
Below, we extract ``[sampling.solver]`` and ``[train]`` with changes from the aenet input.
141145

142146
.. code-block:: toml
143-
147+
144148
[sampling.solver]
145149
type = 'allegro'
146150
base_input_dir = './baseinput_allegro'
@@ -165,16 +169,16 @@ Also, create the Allegro input file ``input.yaml`` in the ``allegro_train_input/
165169
dataset_seed: 456
166170
167171
# network
168-
num_basis: 8
169-
BesselBasis_trainable: true
172+
AllegroBesselBasis_trainable: true
173+
bessel_frequency_cutoff: 4
170174
PolynomialCutoff_p: 6
171175
l_max: 1
172176
r_max: 8.0
173177
parity: o3_full
174178
num_layers: 2
175179
176-
env_embed_multiplicity: 16
177-
embed_initial_edge: true
180+
num_tensor_features: 16
181+
tensors_mixing_mode: p
178182
two_body_latent_mlp_latent_dimensions: [32, 64]
179183
two_body_latent_mlp_nonlinearity: silu
180184
latent_mlp_latent_dimensions: [64, 64]
@@ -189,16 +193,16 @@ Also, create the Allegro input file ``input.yaml`` in the ``allegro_train_input/
189193
edge_eng_mlp_initialization: uniform
190194
191195
model_builders:
192-
- allegro.model.Allegro
193-
- PerSpeciesRescale
194-
- RescaleEnergyEtc
196+
- allegro.model.Allegro
197+
- PerSpeciesRescale
198+
- RescaleEnergyEtc
195199
196200
197201
dataset: ase
198202
dataset_file_name: structure.xyz
199203
chemical_symbols:
200-
- Mg
201-
- Al
204+
- Mg
205+
- Al
202206
203207
# logging
204208
wandb: false
@@ -291,4 +295,4 @@ Also, create the MLIP-3 input file ``input.almtp`` in the ``mlip_3_train_input/t
291295
alpha_moment_mapping = {0, 4, 5, 6, 7}
292296
293297
294-
The procedure of model learning and sampling is the same as aenet.
298+
The procedure of model learning and sampling is the same as aenet.

docs/sphinx/ja/source/tutorial/other_models.rst

Lines changed: 33 additions & 31 deletions
Original file line numberDiff line numberDiff line change
@@ -62,37 +62,40 @@ NequIP のインストール
6262
dataset_seed: 456
6363
6464
# network
65-
num_basis: 8
66-
BesselBasis_trainable: true
65+
AllegroBesselBasis_trainable: true
66+
bessel_frequency_cutoff: 4
6767
PolynomialCutoff_p: 6
6868
l_max: 1
6969
r_max: 8.0
70-
parity: true
71-
num_layers: 3
72-
num_features: 16
73-
74-
nonlinearity_type: gate
75-
76-
nonlinearity_scalars:
77-
e: silu
78-
o: tanh
70+
parity: o3_full
71+
num_layers: 2
7972
80-
nonlinearity_gates:
81-
e: silu
82-
o: tanh
73+
num_tensor_features: 16
74+
tensors_mixing_mode: p
75+
two_body_latent_mlp_latent_dimensions: [32, 64]
76+
two_body_latent_mlp_nonlinearity: silu
77+
latent_mlp_latent_dimensions: [64, 64]
78+
latent_mlp_nonlinearity: silu
79+
latent_mlp_initialization: uniform
80+
latent_resnet: true
81+
env_embed_mlp_latent_dimensions: []
82+
env_embed_mlp_nonlinearity: null
83+
env_embed_mlp_initialization: uniform
84+
edge_eng_mlp_latent_dimensions: [16]
85+
edge_eng_mlp_nonlinearity: null
86+
edge_eng_mlp_initialization: uniform
8387
8488
model_builders:
85-
- SimpleIrrepsConfig
86-
- EnergyModel
87-
- PerSpeciesRescale
88-
- RescaleEnergyEtc
89+
- allegro.model.Allegro
90+
- PerSpeciesRescale
91+
- RescaleEnergyEtc
8992
9093
9194
dataset: ase
9295
dataset_file_name: structure.xyz
9396
chemical_symbols:
94-
- Mg
95-
- Al
97+
- Mg
98+
- Al
9699
97100
# logging
98101
wandb: false
@@ -165,17 +168,16 @@ Allegro のインストール
165168
dataset_seed: 456
166169
167170
# network
168-
num_basis: 8
169-
BesselBasis_trainable: true
171+
AllegroBesselBasis_trainable: true
172+
bessel_frequency_cutoff: 4
170173
PolynomialCutoff_p: 6
171174
l_max: 1
172175
r_max: 8.0
173176
parity: o3_full
174177
num_layers: 2
175-
# num_features: 16
176178
177-
env_embed_multiplicity: 16
178-
embed_initial_edge: true
179+
num_tensor_features: 16
180+
tensors_mixing_mode: p
179181
two_body_latent_mlp_latent_dimensions: [32, 64]
180182
two_body_latent_mlp_nonlinearity: silu
181183
latent_mlp_latent_dimensions: [64, 64]
@@ -190,16 +192,16 @@ Allegro のインストール
190192
edge_eng_mlp_initialization: uniform
191193
192194
model_builders:
193-
- allegro.model.Allegro
194-
- PerSpeciesRescale
195-
- RescaleEnergyEtc
195+
- allegro.model.Allegro
196+
- PerSpeciesRescale
197+
- RescaleEnergyEtc
196198
197199
198200
dataset: ase
199201
dataset_file_name: structure.xyz
200202
chemical_symbols:
201-
- Mg
202-
- Al
203+
- Mg
204+
- Al
203205
204206
# logging
205207
wandb: false
@@ -290,4 +292,4 @@ MLIP-3の実行ファイル ``mlp`` のパスを指定します。お使いの
290292
alpha_scalar_moments = 5
291293
alpha_moment_mapping = {0, 4, 5, 6, 7}
292294
293-
モデル学習、サンプリングの方法に関してはaenetと同様です。
295+
モデル学習、サンプリングの方法に関してはaenetと同様です。

examples/active_learning_qe/allegro_train_input/train/input.yaml

Lines changed: 7 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -4,17 +4,16 @@ seed: 123
44
dataset_seed: 456
55

66
# network
7-
num_basis: 8
8-
BesselBasis_trainable: true
7+
AllegroBesselBasis_trainable: true
8+
bessel_frequency_cutoff: 4
99
PolynomialCutoff_p: 6
1010
l_max: 1
1111
r_max: 8.0
1212
parity: o3_full
1313
num_layers: 2
14-
# num_features: 16
1514

16-
env_embed_multiplicity: 16
17-
embed_initial_edge: true
15+
num_tensor_features: 16
16+
tensors_mixing_mode: p
1817
two_body_latent_mlp_latent_dimensions: [32, 64]
1918
two_body_latent_mlp_nonlinearity: silu
2019
latent_mlp_latent_dimensions: [64, 64]
@@ -29,9 +28,9 @@ edge_eng_mlp_nonlinearity: null
2928
edge_eng_mlp_initialization: uniform
3029

3130
model_builders:
32-
- allegro.model.Allegro
33-
- PerSpeciesRescale
34-
- RescaleEnergyEtc
31+
- allegro.model.Allegro
32+
- PerSpeciesRescale
33+
- RescaleEnergyEtc
3534

3635

3736
dataset: ase

tests/integration/active_learn_nequip/AL.sh

Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -13,4 +13,10 @@ sleep 5
1313
#train
1414
echo start training
1515
abics_train input.toml
16+
17+
# for debug
18+
echo '== cat train0/stdout =='
19+
cat train0/stdout
20+
echo '== end of train0/stdout =='
21+
1622
echo Done

tests/integration/active_learn_nequip/allegro_train_input/train/input.yaml

Lines changed: 7 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -4,17 +4,16 @@ seed: 123
44
dataset_seed: 456
55

66
# network
7-
num_basis: 8
8-
BesselBasis_trainable: true
7+
AllegroBesselBasis_trainable: true
8+
bessel_frequency_cutoff: 4
99
PolynomialCutoff_p: 6
1010
l_max: 1
1111
r_max: 8.0
1212
parity: o3_full
1313
num_layers: 2
14-
# num_features: 16
1514

16-
env_embed_multiplicity: 16
17-
embed_initial_edge: true
15+
num_tensor_features: 16
16+
tensors_mixing_mode: p
1817
two_body_latent_mlp_latent_dimensions: [32, 64]
1918
two_body_latent_mlp_nonlinearity: silu
2019
latent_mlp_latent_dimensions: [64, 64]
@@ -29,9 +28,9 @@ edge_eng_mlp_nonlinearity: null
2928
edge_eng_mlp_initialization: uniform
3029

3130
model_builders:
32-
- allegro.model.Allegro
33-
- PerSpeciesRescale
34-
- RescaleEnergyEtc
31+
- allegro.model.Allegro
32+
- PerSpeciesRescale
33+
- RescaleEnergyEtc
3534

3635

3736
dataset: ase

tests/integration/active_learn_nequip/install_nequip.sh

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -10,6 +10,6 @@ which python3
1010

1111
echo
1212

13-
python3 -m pip install torch
13+
python3 -m pip install torch==2.5.1
1414
python3 -m pip install nequip
1515
python3 -m pip install git+https://github.com/mir-group/allegro.git

0 commit comments

Comments
 (0)