forked from wrf-model/WRF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodule_cu_osas.F
executable file
·2508 lines (2425 loc) · 84.9 KB
/
module_cu_osas.F
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
!!
MODULE module_cu_osas
CONTAINS
!-----------------------------------------------------------------
SUBROUTINE CU_OSAS(DT,ITIMESTEP,STEPCU, &
RTHCUTEN,RQVCUTEN,RQCCUTEN,RQICUTEN, &
RUCUTEN,RVCUTEN, & ! gopal's doing for SAS
RAINCV,PRATEC,HTOP,HBOT, &
U3D,V3D,W,T3D,QV3D,QC3D,QI3D,PI3D,RHO3D, &
DZ8W,PCPS,P8W,XLAND,CU_ACT_FLAG, &
P_QC, &
STORE_RAND,MOMMIX, & ! gopal's doing
P_QI,P_FIRST_SCALAR, &
ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
its,ite, jts,jte, kts,kte )
!-------------------------------------------------------------------
USE MODULE_GFS_MACHINE , ONLY : kind_phys
USE MODULE_GFS_FUNCPHYS , ONLY : gfuncphys
USE MODULE_GFS_PHYSCONS, grav => con_g, CP => con_CP, HVAP => con_HVAP &
&, RV => con_RV, FV => con_fvirt, T0C => con_T0C &
&, CVAP => con_CVAP, CLIQ => con_CLIQ &
&, EPS => con_eps, EPSM1 => con_epsm1 &
&, ROVCP => con_rocp, RD => con_rd
!-------------------------------------------------------------------
IMPLICIT NONE
!-------------------------------------------------------------------
!-- U3D 3D u-velocity interpolated to theta points (m/s)
!-- V3D 3D v-velocity interpolated to theta points (m/s)
!-- TH3D 3D potential temperature (K)
!-- T3D temperature (K)
!-- QV3D 3D water vapor mixing ratio (Kg/Kg)
!-- QC3D 3D cloud mixing ratio (Kg/Kg)
!-- QI3D 3D ice mixing ratio (Kg/Kg)
!-- P8w 3D pressure at full levels (Pa)
!-- Pcps 3D pressure (Pa)
!-- PI3D 3D exner function (dimensionless)
!-- rr3D 3D dry air density (kg/m^3)
!-- RUBLTEN U tendency due to
! PBL parameterization (m/s^2)
!-- RVBLTEN V tendency due to
! PBL parameterization (m/s^2)
!-- RTHBLTEN Theta tendency due to
! PBL parameterization (K/s)
!-- RQVBLTEN Qv tendency due to
! PBL parameterization (kg/kg/s)
!-- RQCBLTEN Qc tendency due to
! PBL parameterization (kg/kg/s)
!-- RQIBLTEN Qi tendency due to
! PBL parameterization (kg/kg/s)
!
!-- MOMMIX MOMENTUM MIXING COEFFICIENT (can be set in the namelist)
!-- RUCUTEN U tendency due to Cumulus Momentum Mixing (gopal's doing for SAS)
!-- RVCUTEN V tendency due to Cumulus Momentum Mixing (gopal's doing for SAS)
!
!-- CP heat capacity at constant pressure for dry air (J/kg/K)
!-- GRAV acceleration due to gravity (m/s^2)
!-- ROVCP R/CP
!-- RD gas constant for dry air (J/kg/K)
!-- ROVG R/G
!-- P_QI species index for cloud ice
!-- dz8w dz between full levels (m)
!-- z height above sea level (m)
!-- PSFC pressure at the surface (Pa)
!-- UST u* in similarity theory (m/s)
!-- PBL PBL height (m)
!-- PSIM similarity stability function for momentum
!-- PSIH similarity stability function for heat
!-- HFX upward heat flux at the surface (W/m^2)
!-- QFX upward moisture flux at the surface (kg/m^2/s)
!-- TSK surface temperature (K)
!-- GZ1OZ0 log(z/z0) where z0 is roughness length
!-- WSPD wind speed at lowest model level (m/s)
!-- BR bulk Richardson number in surface layer
!-- DT time step (s)
!-- rvovrd R_v divided by R_d (dimensionless)
!-- EP1 constant for virtual temperature (R_v/R_d - 1) (dimensionless)
!-- KARMAN Von Karman constant
!-- ids start index for i in domain
!-- ide end index for i in domain
!-- jds start index for j in domain
!-- jde end index for j in domain
!-- kds start index for k in domain
!-- kde end index for k in domain
!-- ims start index for i in memory
!-- ime end index for i in memory
!-- jms start index for j in memory
!-- jme end index for j in memory
!-- kms start index for k in memory
!-- kme end index for k in memory
!-- its start index for i in tile
!-- ite end index for i in tile
!-- jts start index for j in tile
!-- jte end index for j in tile
!-- kts start index for k in tile
!-- kte end index for k in tile
!-------------------------------------------------------------------
INTEGER :: ICLDCK
INTEGER, INTENT(IN) :: ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
its,ite, jts,jte, kts,kte, &
ITIMESTEP, & !NSTD
P_FIRST_SCALAR, &
P_QC, &
P_QI, &
STEPCU
REAL, INTENT(IN) :: &
DT
REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(INOUT) :: &
RQCCUTEN, &
RQICUTEN, &
RQVCUTEN, &
RTHCUTEN
REAL, DIMENSION(ims:ime, jms:jme, kms:kme), INTENT(INOUT) :: &
RUCUTEN, & ! gopal's doing for SAS
RVCUTEN ! gopal's doing for SAS
REAL, OPTIONAL, INTENT(IN) :: MOMMIX
REAL, DIMENSION( ims:ime , jms:jme ), OPTIONAL, &
INTENT(IN) :: STORE_RAND
REAL, DIMENSION(ims:ime, jms:jme), INTENT(IN) :: &
XLAND
REAL, DIMENSION(ims:ime, jms:jme), INTENT(INOUT) :: &
RAINCV, PRATEC
REAL, DIMENSION(ims:ime, jms:jme), INTENT(OUT) :: &
HBOT, &
HTOP
LOGICAL, DIMENSION(IMS:IME,JMS:JME), INTENT(INOUT) :: &
CU_ACT_FLAG
REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(IN) :: &
DZ8W, &
P8w, &
Pcps, &
PI3D, &
QC3D, &
QI3D, &
QV3D, &
RHO3D, &
T3D, &
U3D, &
V3D, &
W
!--------------------------- LOCAL VARS ------------------------------
REAL, DIMENSION(ims:ime, jms:jme) :: &
PSFC
REAL (kind=kind_phys) :: &
DELT, &
DPSHC, &
RDELT, &
RSEED
REAL (kind=kind_phys), DIMENSION(its:ite) :: &
CLDWRK, &
PS, &
RCS, &
RN, &
SLIMSK, &
XKT2
REAL (kind=kind_phys), DIMENSION(its:ite, kts:kte+1) :: &
PRSI
REAL (kind=kind_phys), DIMENSION(its:ite, kts:kte) :: &
DEL, &
DOT, &
PHIL, &
PRSL, &
PRSLK, &
Q1, &
T1, &
U1, &
V1, &
ZI, &
ZL
REAL (kind=kind_phys), DIMENSION(its:ite, kts:kte, 2) :: &
QL
INTEGER, DIMENSION(its:ite) :: &
KBOT, &
KTOP, &
KUO
INTEGER :: &
I, &
IGPVS, &
IM, &
J, &
JCAP, &
K, &
KM, &
KP, &
KX, &
NCLOUD
DATA IGPVS/0/
!-----------------------------------------------------------------------
!
DO J=JTS,JTE
DO I=ITS,ITE
CU_ACT_FLAG(I,J)=.TRUE.
ENDDO
ENDDO
IM=ITE-ITS+1
KX=KTE-KTS+1
JCAP=126
DPSHC=30_kind_phys
DELT=DT*STEPCU
RDELT=1./DELT
NCLOUD=1
DO J=jms,jme
DO I=ims,ime
PSFC(i,j)=P8w(i,kms,j)
ENDDO
ENDDO
if(igpvs.eq.0) CALL GFUNCPHYS
igpvs=1
!------------- J LOOP (OUTER) --------------------------------------------------
DO J=jts,jte
! --------------- compute zi and zl -----------------------------------------
DO i=its,ite
ZI(I,KTS)=0.0
ENDDO
DO k=kts+1,kte
KM=K-1
DO i=its,ite
ZI(I,K)=ZI(I,KM)+dz8w(i,km,j)
ENDDO
ENDDO
DO k=kts+1,kte
KM=K-1
DO i=its,ite
ZL(I,KM)=(ZI(I,K)+ZI(I,KM))*0.5
ENDDO
ENDDO
DO i=its,ite
ZL(I,KTE)=2.*ZI(I,KTE)-ZL(I,KTE-1)
ENDDO
! --------------- end compute zi and zl -------------------------------------
! Based on some important findings from Morris Bender, XKT2 was defined in
! terms of random number instead of random number based cloud tops
! Also, these random numbers are stored and are changed only once in
! approximately 5 minutes interval now. This is gopal's doing for HWRF.
! call random_number(XKT2)
#if (EM_CORE == 1)
! XKT2 was defined in terms of random number instead of random number based cloud tops
! ZCX
call init_random_seed()
call random_number(XKT2)
#ifdef REGTEST
! for regtest only
xkt2 = 0.1
#endif
#endif
!
#if (NMM_CORE == 1)
DO i=its,ite
XKT2(i) = STORE_RAND(i,j)
ENDDO
#endif
DO i=its,ite
PS(i)=PSFC(i,j)*.001
RCS(i)=1.
SLIMSK(i)=ABS(XLAND(i,j)-2.)
ENDDO
DO i=its,ite
PRSI(i,kts)=PS(i)
ENDDO
DO k=kts,kte
kp=k+1
DO i=its,ite
PRSL(I,K)=Pcps(i,k,j)*.001
PHIL(I,K)=ZL(I,K)*GRAV
DOT(i,k)=-5.0E-4*GRAV*rho3d(i,k,j)*(w(i,k,j)+w(i,kp,j))
ENDDO
ENDDO
DO k=kts,kte
DO i=its,ite
DEL(i,k)=PRSL(i,k)*GRAV/RD*dz8w(i,k,j)/T3D(i,k,j)
U1(i,k)=U3D(i,k,j)
V1(i,k)=V3D(i,k,j)
Q1(i,k)=QV3D(i,k,j)/(1.+QV3D(i,k,j))
T1(i,k)=T3D(i,k,j)
QL(i,k,1)=QI3D(i,k,j)/(1.+QI3D(i,k,j))
QL(i,k,2)=QC3D(i,k,j)/(1.+QC3D(i,k,j))
PRSLK(I,K)=(PRSL(i,k)*.01)**ROVCP
ENDDO
ENDDO
DO k=kts+1,kte+1
km=k-1
DO i=its,ite
PRSI(i,k)=PRSI(i,km)-del(i,km)
ENDDO
ENDDO
CALL OSASCNV(IM,IM,KX,JCAP,DELT,DEL,PRSL,PS,PHIL, &
QL,Q1,T1,U1,V1,RCS,CLDWRK,RN,KBOT, &
KTOP,KUO,SLIMSK,DOT,XKT2,NCLOUD)
!!! make more like GFDL ... eliminate shallow convection.....
!!! CALL SHALCV(IM,IM,KX,DELT,DEL,PRSI,PRSL,PRSLK,KUO,Q1,T1,DPSHC)
#if (EM_CORE == 1)
CALL SHALCV(IM,IM,KX,DELT,DEL,PRSI,PRSL,PRSLK,KUO,Q1,T1,DPSHC)
#endif
DO I=ITS,ITE
RAINCV(I,J)=RN(I)*1000./STEPCU
PRATEC(I,J)=RN(I)*1000./(STEPCU * DT)
HBOT(I,J)=KBOT(I)
HTOP(I,J)=KTOP(I)
ENDDO
DO K=KTS,KTE
DO I=ITS,ITE
RTHCUTEN(I,K,J)=(T1(I,K)-T3D(I,K,J))/PI3D(I,K,J)*RDELT
RQVCUTEN(I,K,J)=(Q1(I,K)/(1.-q1(i,k))-QV3D(I,K,J))*RDELT
ENDDO
ENDDO
!===============================================================================
! ADD MOMENTUM MIXING TERM AS TENDENCIES. This is gopal's doing for SAS
! MOMMIX is the reduction factor set to 0.7 by default. Because NMM has
! divergence damping term, a reducion factor for cumulum mixing may be
! required otherwise storms were too weak.
!===============================================================================
!
#if (NMM_CORE == 1)
DO K=KTS,KTE
DO I=ITS,ITE
RUCUTEN(I,J,K)=MOMMIX*(U1(I,K)-U3D(I,K,J))*RDELT
RVCUTEN(I,J,K)=MOMMIX*(V1(I,K)-V3D(I,K,J))*RDELT
ENDDO
ENDDO
#endif
IF(P_QC .ge. P_FIRST_SCALAR)THEN
DO K=KTS,KTE
DO I=ITS,ITE
RQCCUTEN(I,K,J)=(QL(I,K,2)/(1.-ql(i,k,2))-QC3D(I,K,J))*RDELT
ENDDO
ENDDO
ENDIF
IF(P_QI .ge. P_FIRST_SCALAR)THEN
DO K=KTS,KTE
DO I=ITS,ITE
RQICUTEN(I,K,J)=(QL(I,K,1)/(1.-ql(i,k,1))-QI3D(I,K,J))*RDELT
ENDDO
ENDDO
ENDIF
ENDDO ! Outer most J loop
END SUBROUTINE CU_OSAS
!====================================================================
SUBROUTINE osasinit(RTHCUTEN,RQVCUTEN,RQCCUTEN,RQICUTEN, &
RUCUTEN,RVCUTEN, & ! gopal's doing for SAS
RESTART,P_QC,P_QI,P_FIRST_SCALAR, &
allowed_to_read, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
!--------------------------------------------------------------------
IMPLICIT NONE
!--------------------------------------------------------------------
LOGICAL , INTENT(IN) :: allowed_to_read,restart
INTEGER , INTENT(IN) :: ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte
INTEGER , INTENT(IN) :: P_FIRST_SCALAR, P_QI, P_QC
REAL, DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(OUT) :: &
RTHCUTEN, &
RQVCUTEN, &
RQCCUTEN, &
RQICUTEN
REAL, DIMENSION( ims:ime , jms:jme , kms:kme ) , INTENT(OUT) :: &
RUCUTEN, & ! gopal's doing for SAS
RVCUTEN
INTEGER :: i, j, k, itf, jtf, ktf
jtf=min0(jte,jde-1)
ktf=min0(kte,kde-1)
itf=min0(ite,ide-1)
#if ( HWRF == 1 )
!zhang's doing
IF(.not.restart .or. .not.allowed_to_read)THEN
!end of zhang's doing
#else
IF(.not.restart)THEN
#endif
DO j=jts,jtf
DO k=kts,ktf
DO i=its,itf
RTHCUTEN(i,k,j)=0.
RQVCUTEN(i,k,j)=0.
RUCUTEN(i,j,k)=0. ! gopal's doing for SAS
RVCUTEN(i,j,k)=0. ! gopal's doing for SAS
ENDDO
ENDDO
ENDDO
IF (P_QC .ge. P_FIRST_SCALAR) THEN
DO j=jts,jtf
DO k=kts,ktf
DO i=its,itf
RQCCUTEN(i,k,j)=0.
ENDDO
ENDDO
ENDDO
ENDIF
IF (P_QI .ge. P_FIRST_SCALAR) THEN
DO j=jts,jtf
DO k=kts,ktf
DO i=its,itf
RQICUTEN(i,k,j)=0.
ENDDO
ENDDO
ENDDO
ENDIF
ENDIF
END SUBROUTINE osasinit
! ------------------------------------------------------------------------
SUBROUTINE OSASCNV(IM,IX,KM,JCAP,DELT,DEL,PRSL,PS,PHIL,QL, &
& Q1,T1,U1,V1,RCS,CLDWRK,RN,KBOT,KTOP,KUO,SLIMSK, &
& DOT,XKT2,ncloud)
! for cloud water version
! parameter(ncloud=0)
! SUBROUTINE OSASCNV(KM,JCAP,DELT,DEL,SL,SLK,PS,QL,
! & Q1,T1,U1,V1,RCS,CLDWRK,RN,KBOT,KTOP,KUO,SLIMSK,
! & DOT,xkt2,ncloud)
!
USE MODULE_GFS_MACHINE , ONLY : kind_phys
USE MODULE_GFS_FUNCPHYS ,ONLY : fpvs
USE MODULE_GFS_PHYSCONS, grav => con_g, CP => con_CP, HVAP => con_HVAP &
&, RV => con_RV, FV => con_fvirt, T0C => con_T0C &
&, CVAP => con_CVAP, CLIQ => con_CLIQ &
&, EPS => con_eps, EPSM1 => con_epsm1
implicit none
!
! include 'constant.h'
!
integer IM, IX, KM, JCAP, ncloud, &
& KBOT(IM), KTOP(IM), KUO(IM), J
real(kind=kind_phys) DELT
real(kind=kind_phys) PS(IM), DEL(IX,KM), PRSL(IX,KM), &
! real(kind=kind_phys) DEL(IX,KM), PRSL(IX,KM),
& QL(IX,KM,2), Q1(IX,KM), T1(IX,KM), &
& U1(IX,KM), V1(IX,KM), RCS(IM), &
& CLDWRK(IM), RN(IM), SLIMSK(IM), &
& DOT(IX,KM), XKT2(IM), PHIL(IX,KM)
!
integer I, INDX, jmn, k, knumb, latd, lond, km1
!
real(kind=kind_phys) adw, alpha, alphal, alphas, &
& aup, beta, betal, betas, &
& c0, cpoel, dellat, delta, &
& desdt, deta, detad, dg, &
& dh, dhh, dlnsig, dp, &
& dq, dqsdp, dqsdt, dt, &
& dt2, dtmax, dtmin, dv1, &
& dv1q, dv2, dv2q, dv1u, &
& dv1v, dv2u, dv2v, dv3u, &
& dv3v, dv3, dv3q, dvq1, &
& dz, dz1, e1, edtmax, &
& edtmaxl, edtmaxs, el2orc, elocp, &
& es, etah, &
& evef, evfact, evfactl, fact1, &
& fact2, factor, fjcap, fkm, &
& fuv, g, gamma, onemf, &
& onemfu, pdetrn, pdpdwn, pprime, &
& qc, qlk, qrch, qs, &
& rain, rfact, shear, tem1, &
& tem2, terr, val, val1, &
& val2, w1, w1l, w1s, &
& w2, w2l, w2s, w3, &
& w3l, w3s, w4, w4l, &
& w4s, xdby, xpw, xpwd, &
& xqc, xqrch, xlambu, mbdt, &
& tem
!
!
integer JMIN(IM), KB(IM), KBCON(IM), KBDTR(IM), &
& KT2(IM), KTCON(IM), LMIN(IM), &
& kbm(IM), kbmax(IM), kmax(IM)
!
real(kind=kind_phys) AA1(IM), ACRT(IM), ACRTFCT(IM), &
& DELHBAR(IM), DELQ(IM), DELQ2(IM), &
& DELQBAR(IM), DELQEV(IM), DELTBAR(IM), &
& DELTV(IM), DTCONV(IM), EDT(IM), &
& EDTO(IM), EDTX(IM), FLD(IM), &
& HCDO(IM), HKBO(IM), HMAX(IM), &
& HMIN(IM), HSBAR(IM), UCDO(IM), &
& UKBO(IM), VCDO(IM), VKBO(IM), &
& PBCDIF(IM), PDOT(IM), PO(IM,KM), &
& PWAVO(IM), PWEVO(IM), &
! & PSFC(IM), PWAVO(IM), PWEVO(IM), &
& QCDO(IM), QCOND(IM), QEVAP(IM), &
& QKBO(IM), RNTOT(IM), VSHEAR(IM), &
& XAA0(IM), XHCD(IM), XHKB(IM), &
& XK(IM), XLAMB(IM), XLAMD(IM), &
& XMB(IM), XMBMAX(IM), XPWAV(IM), &
& XPWEV(IM), XQCD(IM), XQKB(IM)
!
! PHYSICAL PARAMETERS
PARAMETER(G=grav)
PARAMETER(CPOEL=CP/HVAP,ELOCP=HVAP/CP, &
& EL2ORC=HVAP*HVAP/(RV*CP))
PARAMETER(TERR=0.,C0=.002,DELTA=fv)
PARAMETER(FACT1=(CVAP-CLIQ)/RV,FACT2=HVAP/RV-FACT1*T0C)
! LOCAL VARIABLES AND ARRAYS
real(kind=kind_phys) PFLD(IM,KM), TO(IM,KM), QO(IM,KM), &
& UO(IM,KM), VO(IM,KM), QESO(IM,KM)
! cloud water
real(kind=kind_phys) QLKO_KTCON(IM), DELLAL(IM), TVO(IM,KM), &
& DBYO(IM,KM), ZO(IM,KM), SUMZ(IM,KM), &
& SUMH(IM,KM), HEO(IM,KM), HESO(IM,KM), &
& QRCD(IM,KM), DELLAH(IM,KM), DELLAQ(IM,KM),&
& DELLAU(IM,KM), DELLAV(IM,KM), HCKO(IM,KM), &
& UCKO(IM,KM), VCKO(IM,KM), QCKO(IM,KM), &
& ETA(IM,KM), ETAU(IM,KM), ETAD(IM,KM), &
& QRCDO(IM,KM), PWO(IM,KM), PWDO(IM,KM), &
& RHBAR(IM), TX1(IM)
!
LOGICAL TOTFLG, CNVFLG(IM), DWNFLG(IM), DWNFLG2(IM), FLG(IM)
!
real(kind=kind_phys) PCRIT(15), ACRITT(15), ACRIT(15)
! SAVE PCRIT, ACRITT
DATA PCRIT/850.,800.,750.,700.,650.,600.,550.,500.,450.,400., &
& 350.,300.,250.,200.,150./
DATA ACRITT/.0633,.0445,.0553,.0664,.075,.1082,.1521,.2216, &
& .3151,.3677,.41,.5255,.7663,1.1686,1.6851/
! GDAS DERIVED ACRIT
! DATA ACRITT/.203,.515,.521,.566,.625,.665,.659,.688, &
! & .743,.813,.886,.947,1.138,1.377,1.896/
!
real(kind=kind_phys) TF, TCR, TCRF, RZERO, RONE
parameter (TF=233.16, TCR=263.16, TCRF=1.0/(TCR-TF))
parameter (RZERO=0.0,RONE=1.0)
!-----------------------------------------------------------------------
!
km1 = km - 1
! INITIALIZE ARRAYS
!
DO I=1,IM
RN(I)=0.
KBOT(I)=KM+1
KTOP(I)=0
KUO(I)=0
CNVFLG(I) = .TRUE.
DTCONV(I) = 3600.
CLDWRK(I) = 0.
PDOT(I) = 0.
KT2(I) = 0
QLKO_KTCON(I) = 0.
DELLAL(I) = 0.
ENDDO
!!
DO K = 1, 15
ACRIT(K) = ACRITT(K) * (975. - PCRIT(K))
ENDDO
DT2 = DELT
!cmr dtmin = max(dt2,1200.)
val = 1200.
dtmin = max(dt2, val )
!cmr dtmax = max(dt2,3600.)
val = 3600.
dtmax = max(dt2, val )
! MODEL TUNABLE PARAMETERS ARE ALL HERE
MBDT = 10.
EDTMAXl = .3
EDTMAXs = .3
ALPHAl = .5
ALPHAs = .5
BETAl = .15
betas = .15
BETAl = .05
betas = .05
! change for hurricane model
BETAl = .5
betas = .5
! EVEF = 0.07
evfact = 0.3
evfactl = 0.3
! change for hurricane model
evfact = 0.6
evfactl = .6
#if ( EM_CORE == 1 )
! HAWAII TEST - ZCX
ALPHAl = .5
ALPHAs = .75
BETAl = .05
betas = .05
evfact = 0.5
evfactl = 0.5
#endif
PDPDWN = 0.
PDETRN = 200.
xlambu = 1.e-4
fjcap = (float(jcap) / 126.) ** 2
!cmr fjcap = max(fjcap,1.)
val = 1.
fjcap = max(fjcap,val)
fkm = (float(km) / 28.) ** 2
!cmr fkm = max(fkm,1.)
fkm = max(fkm,val)
W1l = -8.E-3
W2l = -4.E-2
W3l = -5.E-3
W4l = -5.E-4
W1s = -2.E-4
W2s = -2.E-3
W3s = -1.E-3
W4s = -2.E-5
!CCCC IF(IM.EQ.384) THEN
LATD = 92
lond = 189
!CCCC ELSEIF(IM.EQ.768) THEN
!CCCC LATD = 80
!CCCC ELSE
!CCCC LATD = 0
!CCCC ENDIF
!
! DEFINE TOP LAYER FOR SEARCH OF THE DOWNDRAFT ORIGINATING LAYER
! AND THE MAXIMUM THETAE FOR UPDRAFT
!
DO I=1,IM
KBMAX(I) = KM
KBM(I) = KM
KMAX(I) = KM
TX1(I) = 1.0 / PS(I)
ENDDO
!
DO K = 1, KM
DO I=1,IM
IF (prSL(I,K)*tx1(I) .GT. 0.45) KBMAX(I) = K + 1
IF (prSL(I,K)*tx1(I) .GT. 0.70) KBM(I) = K + 1
IF (prSL(I,K)*tx1(I) .GT. 0.04) KMAX(I) = MIN(KM,K + 1)
ENDDO
ENDDO
DO I=1,IM
KBMAX(I) = MIN(KBMAX(I),KMAX(I))
KBM(I) = MIN(KBM(I),KMAX(I))
ENDDO
!
! CONVERT SURFACE PRESSURE TO MB FROM CB
!
!!
DO K = 1, KM
DO I=1,IM
if (K .le. kmax(i)) then
PFLD(I,k) = PRSL(I,K) * 10.0
PWO(I,k) = 0.
PWDO(I,k) = 0.
TO(I,k) = T1(I,k)
QO(I,k) = Q1(I,k)
UO(I,k) = U1(I,k)
VO(I,k) = V1(I,k)
DBYO(I,k) = 0.
SUMZ(I,k) = 0.
SUMH(I,k) = 0.
endif
ENDDO
ENDDO
!
! COLUMN VARIABLES
! P IS PRESSURE OF THE LAYER (MB)
! T IS TEMPERATURE AT T-DT (K)..TN
! Q IS MIXING RATIO AT T-DT (KG/KG)..QN
! TO IS TEMPERATURE AT T+DT (K)... THIS IS AFTER ADVECTION AND TURBULAN
! QO IS MIXING RATIO AT T+DT (KG/KG)..Q1
!
DO K = 1, KM
DO I=1,IM
if (k .le. kmax(i)) then
!jfe QESO(I,k) = 10. * FPVS(T1(I,k))
!
QESO(I,k) = 0.01 * fpvs(T1(I,K)) ! fpvs is in Pa
!
QESO(I,k) = EPS * QESO(I,k) / (PFLD(I,k) + EPSM1*QESO(I,k))
!cmr QESO(I,k) = MAX(QESO(I,k),1.E-8)
val1 = 1.E-8
QESO(I,k) = MAX(QESO(I,k), val1)
!cmr QO(I,k) = max(QO(I,k),1.e-10)
val2 = 1.e-10
QO(I,k) = max(QO(I,k), val2 )
! QO(I,k) = MIN(QO(I,k),QESO(I,k))
TVO(I,k) = TO(I,k) + DELTA * TO(I,k) * QO(I,k)
endif
ENDDO
ENDDO
!
! HYDROSTATIC HEIGHT ASSUME ZERO TERR
!
DO K = 1, KM
DO I=1,IM
ZO(I,k) = PHIL(I,k) / G
ENDDO
ENDDO
! COMPUTE MOIST STATIC ENERGY
DO K = 1, KM
DO I=1,IM
if (K .le. kmax(i)) then
! tem = G * ZO(I,k) + CP * TO(I,k)
tem = PHIL(I,k) + CP * TO(I,k)
HEO(I,k) = tem + HVAP * QO(I,k)
HESO(I,k) = tem + HVAP * QESO(I,k)
! HEO(I,k) = MIN(HEO(I,k),HESO(I,k))
endif
ENDDO
ENDDO
!
! DETERMINE LEVEL WITH LARGEST MOIST STATIC ENERGY
! THIS IS THE LEVEL WHERE UPDRAFT STARTS
!
DO I=1,IM
HMAX(I) = HEO(I,1)
KB(I) = 1
ENDDO
!!
DO K = 2, KM
DO I=1,IM
if (k .le. kbm(i)) then
IF(HEO(I,k).GT.HMAX(I).AND.CNVFLG(I)) THEN
KB(I) = K
HMAX(I) = HEO(I,k)
ENDIF
endif
ENDDO
ENDDO
! DO K = 1, KMAX - 1
! TOL(k) = .5 * (TO(I,k) + TO(I,k+1))
! QOL(k) = .5 * (QO(I,k) + QO(I,k+1))
! QESOL(I,k) = .5 * (QESO(I,k) + QESO(I,k+1))
! HEOL(I,k) = .5 * (HEO(I,k) + HEO(I,k+1))
! HESOL(I,k) = .5 * (HESO(I,k) + HESO(I,k+1))
! ENDDO
DO K = 1, KM1
DO I=1,IM
if (k .le. kmax(i)-1) then
DZ = .5 * (ZO(I,k+1) - ZO(I,k))
DP = .5 * (PFLD(I,k+1) - PFLD(I,k))
!jfe ES = 10. * FPVS(TO(I,k+1))
!
ES = 0.01 * fpvs(TO(I,K+1)) ! fpvs is in Pa
!
PPRIME = PFLD(I,k+1) + EPSM1 * ES
QS = EPS * ES / PPRIME
DQSDP = - QS / PPRIME
DESDT = ES * (FACT1 / TO(I,k+1) + FACT2 / (TO(I,k+1)**2))
DQSDT = QS * PFLD(I,k+1) * DESDT / (ES * PPRIME)
GAMMA = EL2ORC * QESO(I,k+1) / (TO(I,k+1)**2)
DT = (G * DZ + HVAP * DQSDP * DP) / (CP * (1. + GAMMA))
DQ = DQSDT * DT + DQSDP * DP
TO(I,k) = TO(I,k+1) + DT
QO(I,k) = QO(I,k+1) + DQ
PO(I,k) = .5 * (PFLD(I,k) + PFLD(I,k+1))
endif
ENDDO
ENDDO
!
DO K = 1, KM1
DO I=1,IM
if (k .le. kmax(I)-1) then
!jfe QESO(I,k) = 10. * FPVS(TO(I,k))
!
QESO(I,k) = 0.01 * fpvs(TO(I,K)) ! fpvs is in Pa
!
QESO(I,k) = EPS * QESO(I,k) / (PO(I,k) + EPSM1*QESO(I,k))
!cmr QESO(I,k) = MAX(QESO(I,k),1.E-8)
val1 = 1.E-8
QESO(I,k) = MAX(QESO(I,k), val1)
!cmr QO(I,k) = max(QO(I,k),1.e-10)
val2 = 1.e-10
QO(I,k) = max(QO(I,k), val2 )
! QO(I,k) = MIN(QO(I,k),QESO(I,k))
HEO(I,k) = .5 * G * (ZO(I,k) + ZO(I,k+1)) + &
& CP * TO(I,k) + HVAP * QO(I,k)
HESO(I,k) = .5 * G * (ZO(I,k) + ZO(I,k+1)) + &
& CP * TO(I,k) + HVAP * QESO(I,k)
UO(I,k) = .5 * (UO(I,k) + UO(I,k+1))
VO(I,k) = .5 * (VO(I,k) + VO(I,k+1))
endif
ENDDO
ENDDO
! k = kmax
! HEO(I,k) = HEO(I,k)
! hesol(k) = HESO(I,k)
! IF(LAT.EQ.LATD.AND.lon.eq.lond.and.CNVFLG(I)) THEN
! PRINT *, ' HEO ='
! PRINT 6001, (HEO(I,K),K=1,KMAX)
! PRINT *, ' HESO ='
! PRINT 6001, (HESO(I,K),K=1,KMAX)
! PRINT *, ' TO ='
! PRINT 6002, (TO(I,K)-273.16,K=1,KMAX)
! PRINT *, ' QO ='
! PRINT 6003, (QO(I,K),K=1,KMAX)
! PRINT *, ' QSO ='
! PRINT 6003, (QESO(I,K),K=1,KMAX)
! ENDIF
!
! LOOK FOR CONVECTIVE CLOUD BASE AS THE LEVEL OF FREE CONVECTION
!
DO I=1,IM
IF(CNVFLG(I)) THEN
INDX = KB(I)
HKBO(I) = HEO(I,INDX)
QKBO(I) = QO(I,INDX)
UKBO(I) = UO(I,INDX)
VKBO(I) = VO(I,INDX)
ENDIF
FLG(I) = CNVFLG(I)
KBCON(I) = KMAX(I)
ENDDO
!!
DO K = 1, KM
DO I=1,IM
if (k .le. kbmax(i)) then
IF(FLG(I).AND.K.GT.KB(I)) THEN
HSBAR(I) = HESO(I,k)
IF(HKBO(I).GT.HSBAR(I)) THEN
FLG(I) = .FALSE.
KBCON(I) = K
ENDIF
ENDIF
endif
ENDDO
ENDDO
DO I=1,IM
IF(CNVFLG(I)) THEN
PBCDIF(I) = -PFLD(I,KBCON(I)) + PFLD(I,KB(I))
PDOT(I) = 10.* DOT(I,KBCON(I))
IF(PBCDIF(I).GT.150.) CNVFLG(I) = .FALSE.
IF(KBCON(I).EQ.KMAX(I)) CNVFLG(I) = .FALSE.
ENDIF
ENDDO
!!
TOTFLG = .TRUE.
DO I=1,IM
TOTFLG = TOTFLG .AND. (.NOT. CNVFLG(I))
ENDDO
IF(TOTFLG) RETURN
! FOUND LFC, CAN DEFINE REST OF VARIABLES
6001 FORMAT(2X,-2P10F12.2)
6002 FORMAT(2X,10F12.2)
6003 FORMAT(2X,3P10F12.2)
!
! DETERMINE ENTRAINMENT RATE BETWEEN KB AND KBCON
!
DO I = 1, IM
alpha = alphas
if(SLIMSK(I).eq.1.) alpha = alphal
IF(CNVFLG(I)) THEN
IF(KB(I).EQ.1) THEN
DZ = .5 * (ZO(I,KBCON(I)) + ZO(I,KBCON(I)-1)) - ZO(I,1)
ELSE
DZ = .5 * (ZO(I,KBCON(I)) + ZO(I,KBCON(I)-1)) &
& - .5 * (ZO(I,KB(I)) + ZO(I,KB(I)-1))
ENDIF
IF(KBCON(I).NE.KB(I)) THEN
!cmr XLAMB(I) = -ALOG(ALPHA) / DZ
XLAMB(I) = - LOG(ALPHA) / DZ
ELSE
XLAMB(I) = 0.
ENDIF
ENDIF
ENDDO
! DETERMINE UPDRAFT MASS FLUX
DO K = 1, KM
DO I = 1, IM
if (k .le. kmax(i) .and. CNVFLG(I)) then
ETA(I,k) = 1.
ETAU(I,k) = 1.
ENDIF
ENDDO
ENDDO
DO K = KM1, 2, -1
DO I = 1, IM
if (k .le. kbmax(i)) then
IF(CNVFLG(I).AND.K.LT.KBCON(I).AND.K.GE.KB(I)) THEN
DZ = .5 * (ZO(I,k+1) - ZO(I,k-1))
ETA(I,k) = ETA(I,k+1) * EXP(-XLAMB(I) * DZ)
ETAU(I,k) = ETA(I,k)
ENDIF
endif
ENDDO
ENDDO
DO I = 1, IM
IF(CNVFLG(I).AND.KB(I).EQ.1.AND.KBCON(I).GT.1) THEN
DZ = .5 * (ZO(I,2) - ZO(I,1))
ETA(I,1) = ETA(I,2) * EXP(-XLAMB(I) * DZ)
ETAU(I,1) = ETA(I,1)
ENDIF
ENDDO
!
! WORK UP UPDRAFT CLOUD PROPERTIES
!
DO I = 1, IM
IF(CNVFLG(I)) THEN
INDX = KB(I)
HCKO(I,INDX) = HKBO(I)
QCKO(I,INDX) = QKBO(I)
UCKO(I,INDX) = UKBO(I)
VCKO(I,INDX) = VKBO(I)
PWAVO(I) = 0.
ENDIF
ENDDO
!
! CLOUD PROPERTY BELOW CLOUD BASE IS MODIFIED BY THE ENTRAINMENT PROCES
!
DO K = 2, KM1
DO I = 1, IM
if (k .le. kmax(i)-1) then
IF(CNVFLG(I).AND.K.GT.KB(I).AND.K.LE.KBCON(I)) THEN
FACTOR = ETA(I,k-1) / ETA(I,k)
ONEMF = 1. - FACTOR
HCKO(I,k) = FACTOR * HCKO(I,k-1) + ONEMF * &
& .5 * (HEO(I,k) + HEO(I,k+1))
UCKO(I,k) = FACTOR * UCKO(I,k-1) + ONEMF * &
& .5 * (UO(I,k) + UO(I,k+1))
VCKO(I,k) = FACTOR * VCKO(I,k-1) + ONEMF * &
& .5 * (VO(I,k) + VO(I,k+1))
DBYO(I,k) = HCKO(I,k) - HESO(I,k)
ENDIF
IF(CNVFLG(I).AND.K.GT.KBCON(I)) THEN
HCKO(I,k) = HCKO(I,k-1)
UCKO(I,k) = UCKO(I,k-1)
VCKO(I,k) = VCKO(I,k-1)
DBYO(I,k) = HCKO(I,k) - HESO(I,k)
ENDIF
endif
ENDDO
ENDDO
! DETERMINE CLOUD TOP
DO I = 1, IM
FLG(I) = CNVFLG(I)
KTCON(I) = 1
ENDDO
! DO K = 2, KMAX
! KK = KMAX - K + 1
! IF(DBYO(I,kK).GE.0..AND.FLG(I).AND.KK.GT.KBCON(I)) THEN
! KTCON(I) = KK + 1
! FLG(I) = .FALSE.
! ENDIF
! ENDDO
DO K = 2, KM
DO I = 1, IM
if (k .le. kmax(i)) then
IF(DBYO(I,k).LT.0..AND.FLG(I).AND.K.GT.KBCON(I)) THEN