forked from wrf-model/WRF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodule_bl_gfs.F
executable file
·1467 lines (1370 loc) · 53.1 KB
/
module_bl_gfs.F
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
!LWRF:MODEL_LAYER:PHYSICS
!
MODULE module_bl_gfs
CONTAINS
!-------------------------------------------------------------------
SUBROUTINE BL_GFS(U3D,V3D,TH3D,T3D,QV3D,QC3D,QI3D,P3D,PI3D, &
RUBLTEN,RVBLTEN,RTHBLTEN, &
RQVBLTEN,RQCBLTEN,RQIBLTEN, &
CP,G,ROVCP,R,ROVG,P_QI,P_FIRST_SCALAR, &
dz8w,z,PSFC, &
UST,PBL,PSIM,PSIH, &
HFX,QFX,TSK,GZ1OZ0,WSPD,BR, &
DT,KPBL2D,EP1,KARMAN, &
#if (NMM_CORE==1)
DISHEAT, &
#endif
#if (HWRF==1)
ALPHA, &
HPBL2D, EVAP2D, HEAT2D, & !Kwon add FOR SHAL. CON.
VAR_RIC, & !Kwon for variable Ric
U10,V10,ZNT,MZNT,rc2d, & !Kwon for variable Ric
DKU3D,DKT3D,coef_ric_l,coef_ric_s,xland, & !Kwon for variable Ric
msang,scurx,scury,iwavecpl,lcurr_sf, &
pert_pbl, ens_random_seed, ens_pblamp, &
#endif
ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
its,ite, jts,jte, kts,kte )
!--------------------------------------------------------------------
USE MODULE_GFS_MACHINE , ONLY : kind_phys
!-------------------------------------------------------------------
IMPLICIT NONE
!-------------------------------------------------------------------
!-- U3D 3D u-velocity interpolated to theta points (m/s)
!-- V3D 3D v-velocity interpolated to theta points (m/s)
!-- TH3D 3D potential temperature (K)
!-- T3D temperature (K)
!-- QV3D 3D water vapor mixing ratio (Kg/Kg)
!-- QC3D 3D cloud mixing ratio (Kg/Kg)
!-- QI3D 3D ice mixing ratio (Kg/Kg)
!-- P3D 3D pressure (Pa)
!-- PI3D 3D exner function (dimensionless)
!-- rr3D 3D dry air density (kg/m^3)
!-- RUBLTEN U tendency due to
! PBL parameterization (m/s^2)
!-- RVBLTEN V tendency due to
! PBL parameterization (m/s^2)
!-- RTHBLTEN Theta tendency due to
! PBL parameterization (K/s)
!-- RQVBLTEN Qv tendency due to
! PBL parameterization (kg/kg/s)
!-- RQCBLTEN Qc tendency due to
! PBL parameterization (kg/kg/s)
!-- RQIBLTEN Qi tendency due to
! PBL parameterization (kg/kg/s)
!-- CP heat capacity at constant pressure for dry air (J/kg/K)
!-- G acceleration due to gravity (m/s^2)
!-- ROVCP R/CP
!-- R gas constant for dry air (J/kg/K)
!-- ROVG R/G
!-- P_QI species index for cloud ice
!-- dz8w dz between full levels (m)
!-- z height above sea level (m)
!-- PSFC pressure at the surface (Pa)
!-- UST u* in similarity theory (m/s)
!-- PBL PBL height (m)
!-- PSIM similarity stability function for momentum
!-- PSIH similarity stability function for heat
!-- HFX upward heat flux at the surface (W/m^2)
!-- QFX upward moisture flux at the surface (kg/m^2/s)
!-- TSK surface temperature (K)
!-- GZ1OZ0 log(z/z0) where z0 is roughness length
!-- WSPD wind speed at lowest model level (m/s)
!-- BR bulk Richardson number in surface layer
!-- DT time step (s)
!-- rvovrd R_v divided by R_d (dimensionless)
!-- EP1 constant for virtual temperature (R_v/R_d - 1) (dimensionless)
!-- KARMAN Von Karman constant
!-- ALPHA boundary depth scaling factor
!-- VAR_RIC Flag for using variable Ric or not (=1: variable Ric, =0: constant Ric)
!-- RO Surface Rossby number
!-- ids start index for i in domain
!-- ide end index for i in domain
!-- jds start index for j in domain
!-- jde end index for j in domain
!-- kds start index for k in domain
!-- kde end index for k in domain
!-- ims start index for i in memory
!-- ime end index for i in memory
!-- jms start index for j in memory
!-- jme end index for j in memory
!-- kms start index for k in memory
!-- kme end index for k in memory
!-- its start index for i in tile
!-- ite end index for i in tile
!-- jts start index for j in tile
!-- jte end index for j in tile
!-- kts start index for k in tile
!-- kte end index for k in tile
!-------------------------------------------------------------------
#if (NMM_CORE==1)
LOGICAL , INTENT(IN):: DISHEAT ! gopal's doing
#endif
#if (HWRF==1)
INTEGER , INTENT(IN) :: iwavecpl
LOGICAL , INTENT(IN) :: lcurr_sf
REAL, DIMENSION(ims:ime, jms:jme), INTENT(OUT) :: &
HPBL2D, & !ADDED BY KWON FOR SHALLOW CONV.
EVAP2D, & !ADDED BY KWON FOR SHALLOW CONV.
HEAT2D,RC2D,MZNT !ADDED BY KWON FOR SHALLOW CONV.
REAL, DIMENSION(ims:ime, jms:jme), INTENT(IN) :: &
U10, & !ADDED BY KWON FOR VARIABLE Ric
V10,XLAND, & !ADDED BY KWON FOR VARIABLE Ric
ZNT !ADDED BY KWON FOR VARIABLE Ric
REAL, DIMENSION(ims:ime, jms:jme, kms:kme), INTENT(OUT) :: DKU3D,DKT3D
REAL, INTENT(IN) :: VAR_RIC,coef_ric_l,coef_ric_s !ADDED BY KWON
REAL, DIMENSION(ims:ime, jms:jme), INTENT(IN) :: &
SCURX, &
SCURY, &
MSANG
integer,intent(in) :: ens_random_seed
real,intent(in) :: ens_pblamp
logical,intent(in) :: pert_pbl
#endif
INTEGER, INTENT(IN) :: ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
its,ite, jts,jte, kts,kte, &
P_QI,P_FIRST_SCALAR
REAL, INTENT(IN) :: &
CP, &
DT, &
EP1, &
G, &
KARMAN, &
R, &
ROVCP, &
ROVG
REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(IN) :: &
DZ8W, &
P3D, &
PI3D, &
QC3D, &
QI3D, &
QV3D, &
T3D, &
TH3D, &
U3D, &
V3D, &
Z
REAL, DIMENSION(ims:ime, kms:kme, jms:jme), INTENT(INOUT) :: &
RTHBLTEN, &
RQCBLTEN, &
RQIBLTEN, &
RQVBLTEN, &
RUBLTEN, &
RVBLTEN
REAL, DIMENSION(ims:ime, jms:jme), INTENT(IN) :: &
BR, &
GZ1OZ0, &
HFX, &
PSFC, &
PSIM, &
PSIH, &
QFX, &
TSK
REAL, DIMENSION(ims:ime, jms:jme), INTENT(INOUT) :: &
PBL, &
UST, &
WSPD
INTEGER, DIMENSION(ims:ime, jms:jme), INTENT(OUT) :: &
KPBL2D
!--------------------------- LOCAL VARS ------------------------------
REAL (kind=kind_phys), DIMENSION(its:ite, kts:kte) :: &
DEL, &
DU, &
DV, &
PHIL, &
PRSL, &
PRSLK, &
T1, &
TAU, &
dishx, &
#if (HWRF==1)
dku,dkt, & !Kwon for diffusivity
#endif
U1, &
V1
REAL (kind=kind_phys), DIMENSION(its:ite, kts:kte+1) :: &
PHII, &
PRSI
REAL (kind=kind_phys), DIMENSION(its:ite, kts:kte, 3) :: &
Q1, &
RTG
REAL (kind=kind_phys), DIMENSION(its:ite) :: &
DQSFC, &
DTSFC, &
DUSFC, &
DVSFC, &
EVAP, &
FH, &
FM, &
HEAT, &
HGAMQ, &
HGAMT, &
HPBL, &
PSK, &
QSS, &
RBSOIL, &
RCL, &
XLAND1, &
SPD1, &
STRESS, &
RO,rbcr, & !Kwon for variablr Ric(surface Rossby number)
TSEA
REAL (kind=kind_phys) :: &
CPM, &
cpmikj, &
DELTIM, &
FMTMP, &
RRHOX
#if (HWRF == 1)
REAL :: ALPHA
#else
REAL, PARAMETER:: ALPHA=1.0
#endif
#if (HWRF == 1)
REAL :: UBOT, VBOT, UBOT1, VBOT1
#endif
INTEGER, DIMENSION( its:ite ) :: &
KPBL
INTEGER :: &
I, &
IM, &
J, &
K, &
KM, &
KTEM, &
KTEP, &
KX, &
L, &
NTRAC
IM=ITE-ITS+1
KX=KTE-KTS+1
KTEM=KTE-1
KTEP=KTE+1
NTRAC=2
DELTIM=DT
IF (P_QI.ge.P_FIRST_SCALAR) NTRAC=3
DO J=jts,jte
DO i=its,ite
RRHOX=(R*T3D(I,KTS,J)*(1.+EP1*QV3D(I,KTS,J)))/PSFC(I,J)
CPM=CP*(1.+0.8*QV3D(i,kts,j))
FMTMP=GZ1OZ0(i,j)-PSIM(i,j)
PSK(i)=(PSFC(i,j)*.00001)**ROVCP
FM(i)=FMTMP
FH(i)=GZ1OZ0(i,j)-PSIH(i,j)
TSEA(i)=TSK(i,j)
QSS(i)=QV3D(i,kts,j) ! not used in moninp so set to qv3d for now
HEAT(i)=HFX(i,j)/CPM*RRHOX
EVAP(i)=QFX(i,j)*RRHOX
XLAND1(i) = 0.0
#if (HWRF==1)
! Kwon FOR NEW SHALLOW CONVECTION
HEAT2D(i,j)=HFX(i,j)/CPM*RRHOX
EVAP2D(i,j)=QFX(i,j)*RRHOX
XLAND1(i) = XLAND(I,J)
#endif
!
#if (HWRF==1)
IF ( XLAND(I,J) > 1.99 ) THEN
IF ( LCURR_SF ) THEN
UBOT = U3D(I,KTS,J)-SCURX(I,J)
VBOT = V3D(I,KTS,J)-SCURY(I,J)
ELSE
UBOT = U3D(I,KTS,J)
VBOT = V3D(I,KTS,J)
ENDIF
IF ( IWAVECPL .eq. 1 ) THEN
UBOT1 = ( UBOT * COS(MSANG(I,J)) - &
VBOT * SIN(MSANG(I,J)) ) &
* COS(MSANG(I,J))
VBOT1 = ( VBOT * COS(MSANG(I,J)) - &
UBOT * SIN(MSANG(I,J)) ) &
* COS(MSANG(I,J))
WSPD(i,j) = SQRT(UBOT1*UBOT1+VBOT1*VBOT1) + 1.E-9
ELSE
WSPD(i,j) = SQRT(UBOT*UBOT+VBOT*VBOT) + 1.E-9
ENDIF
ENDIF
#endif
STRESS(i)=KARMAN*KARMAN*WSPD(i,j)*WSPD(i,j)/(FMTMP*FMTMP)
SPD1(i)=WSPD(i,j)
PRSI(i,kts)=PSFC(i,j)*.001
PHII(I,kts)=0.
RCL(i)=1.
RBSOIL(I)=BR(i,j)
#if (HWRF==1)
! Kwon for variable Ric : Ro=W10/(f*zo): surface Rossby number
Ro(I)=SQRT(U10(I,J)**2 + V10(I,J)**2) / (1.E-4 * MZNT(I,J))
#endif
ENDDO
DO k=kts,kte
DO i=its,ite
DV(I,K) = 0.
DU(I,K) = 0.
TAU(I,K) = 0.
#if (HWRF==1)
IF ( XLAND(I,J) > 1.99 .AND. k == KTS ) THEN
IF ( LCURR_SF ) THEN
UBOT = U3D(i,k,j) - SCURX(I,J)
VBOT = V3D(i,k,j) - SCURY(I,J)
ELSE
UBOT = U3D(i,k,j)
VBOT = V3D(i,k,j)
ENDIF
IF ( IWAVECPL .eq. 1 ) THEN
U1(I,K) = ( UBOT * COS(MSANG(I,J)) - &
VBOT * SIN(MSANG(I,J)) ) &
* COS(MSANG(I,J))
V1(I,K) = ( VBOT * COS(MSANG(I,J)) - &
UBOT * SIN(MSANG(I,J)) ) &
* COS(MSANG(I,J))
ELSE
U1(I,K) = UBOT
V1(I,K) = VBOT
ENDIF
ELSE
U1(I,K) = U3D(i,k,j)
V1(I,K) = V3D(i,k,j)
ENDIF
#else
U1(I,K) = U3D(i,k,j)
V1(I,K) = V3D(i,k,j)
#endif
T1(I,K) = T3D(i,k,j)
Q1(I,K,1) = QV3D(i,k,j)/(1.+QV3D(i,k,j))
Q1(I,K,2) = QC3D(i,k,j)/(1.+QC3D(i,k,j))
PRSL(I,K)=P3D(i,k,j)*.001
ENDDO
ENDDO
DO k=kts,kte
DO i=its,ite
PRSLK(I,K)=(PRSL(i,k)*.01)**ROVCP
ENDDO
ENDDO
DO k=kts+1,kte
km=k-1
DO i=its,ite
DEL(i,km)=PRSL(i,km)/ROVG*dz8w(i,km,j)/T3D(i,km,j)
PRSI(i,k)=PRSI(i,km)-DEL(i,km)
PHII(I,K)=(Z(i,k,j)-Z(i,kts,j))*G
PHIL(I,KM)=0.5*(Z(i,k,j)+Z(i,km,j)-2.*Z(i,kts,j))*G
ENDDO
ENDDO
DO i=its,ite
DEL(i,kte)=DEL(i,ktem)
PRSI(i,ktep)=PRSI(i,kte)-DEL(i,ktem)
PHII(I,KTEP)=PHII(I,KTE)+dz8w(i,kte,j)*G
PHIL(I,KTE)=PHII(I,KTE)-PHIL(I,KTEM)+PHII(I,KTE)
ENDDO
IF (P_QI.ge.P_FIRST_SCALAR) THEN
DO k=kts,kte
DO i=its,ite
Q1(I,K,3) = QI3D(i,k,j)/(1.+QI3D(i,k,j))
ENDDO
ENDDO
ENDIF
DO l=1,ntrac
DO k=kts,kte
DO i=its,ite
RTG(I,K,L) = 0.
ENDDO
ENDDO
ENDDO
!
CALL MONINP(IM,IM,KX,NTRAC,DV,DU,TAU,RTG,U1,V1,T1,Q1, &
PSK,RBSOIL,FM,FH,TSEA,QSS,HEAT,EVAP,STRESS, &
SPD1,KPBL,PRSI,DEL,PRSL,PRSLK,PHII,PHIL,RCL, &
DELTIM,DUSFC,DVSFC,DTSFC,DQSFC,HPBL,HGAMT, &
#if (HWRF==1)
VAR_RIC,Ro,DKU,DKT,coef_ric_l,coef_ric_s,xland1, &
pert_pbl, ens_random_seed, ens_pblamp, &
#endif
RBCR,HGAMQ,ALPHA)
!============================================================================
! ADD IN DISSIPATIVE HEATING .... v*dv. This is Bob's doing
!============================================================================
#if (NMM_CORE==1)
IF(DISHEAT)THEN
DO k=kts,kte
DO i=its,ite
dishx(i,k)=u1(i,k)*du(i,k) + v1(i,k)*dv(i,k)
cpmikj=CP*(1.+0.8*QV3D(i,k,j))
dishx(i,k)=-dishx(i,k)/cpmikj
! IF(k==1)WRITE(0,*)'ADDITIONAL DISSIPATIVE HEATING',tau(i,k),dishx(i,k)
tau(i,k)=tau(i,k)+dishx(i,k)
ENDDO
ENDDO
ENDIF
#endif
!=============================================================================
DO k=kts,kte
DO i=its,ite
RVBLTEN(I,K,J)=DV(I,K)
RUBLTEN(I,K,J)=DU(I,K)
RTHBLTEN(I,K,J)=TAU(I,K)/PI3D(I,K,J)
RQVBLTEN(I,K,J)=RTG(I,K,1)/(1.-Q1(I,K,1))**2
RQCBLTEN(I,K,J)=RTG(I,K,2)/(1.-Q1(I,K,2))**2
ENDDO
ENDDO
IF (P_QI.ge.P_FIRST_SCALAR) THEN
DO k=kts,kte
DO i=its,ite
RQIBLTEN(I,K,J)=RTG(I,K,3)/(1.-Q1(I,K,3))**2
ENDDO
ENDDO
ENDIF
DO i=its,ite
UST(i,j)=SQRT(STRESS(i))
WSPD(i,j)=SQRT(U3D(I,KTS,J)*U3D(I,KTS,J)+ &
V3D(I,KTS,J)*V3D(I,KTS,J))+1.E-9
PBL(i,j)=HPBL(i)
#if (HWRF==1)
!Kwon For new shallow convection
HPBL2D(i,j)=HPBL(i)
rc2D(i,j)=rbcr(i)
#endif
!
KPBL2D(i,j)=kpbl(i)
ENDDO
! INITIALIZE DKU3D and DKT3D (3D momentum and thermal diffusivity for
! diagnostics)
!
#if (HWRF==1)
DO i=its,ite
DO k=kts,kte
DKU3D(I,J,K) = 0.
DKT3D(I,J,K) = 0.
ENDDO
ENDDO
DO i=its,ite
DO k=kts,kte-1
DKU3D(I,J,K) = DKU(I,K)
DKT3D(I,J,K) = DKT(I,K)
ENDDO
ENDDO
#endif
ENDDO
END SUBROUTINE BL_GFS
!===================================================================
SUBROUTINE gfsinit(RUBLTEN,RVBLTEN,RTHBLTEN,RQVBLTEN, &
RQCBLTEN,RQIBLTEN,P_QI,P_FIRST_SCALAR, &
restart, &
allowed_to_read, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
!-------------------------------------------------------------------
IMPLICIT NONE
!-------------------------------------------------------------------
LOGICAL , INTENT(IN) :: allowed_to_read,restart
INTEGER , INTENT(IN) :: ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte
INTEGER , INTENT(IN) :: P_QI,P_FIRST_SCALAR
REAL , DIMENSION( ims:ime , kms:kme , jms:jme ) , INTENT(OUT) :: &
RUBLTEN, &
RVBLTEN, &
RTHBLTEN, &
RQVBLTEN, &
RQCBLTEN, &
RQIBLTEN
INTEGER :: i, j, k, itf, jtf, ktf
jtf=min0(jte,jde-1)
ktf=min0(kte,kde-1)
itf=min0(ite,ide-1)
IF(.not.restart)THEN
DO j=jts,jtf
DO k=kts,ktf
DO i=its,itf
RUBLTEN(i,k,j)=0.
RVBLTEN(i,k,j)=0.
RTHBLTEN(i,k,j)=0.
RQVBLTEN(i,k,j)=0.
RQCBLTEN(i,k,j)=0.
ENDDO
ENDDO
ENDDO
ENDIF
IF (P_QI .ge. P_FIRST_SCALAR .and. .not.restart) THEN
DO j=jts,jtf
DO k=kts,ktf
DO i=its,itf
RQIBLTEN(i,k,j)=0.
ENDDO
ENDDO
ENDDO
ENDIF
IF (P_QI .ge. P_FIRST_SCALAR) THEN
DO j=jts,jtf
DO k=kts,ktf
DO i=its,itf
RQIBLTEN(i,k,j)=0.
ENDDO
ENDDO
ENDDO
ENDIF
END SUBROUTINE gfsinit
! --------------------------------------------------------------
!FPP$ NOCONCUR R
SUBROUTINE MONINP(IX,IM,KM,ntrac,DV,DU,TAU,RTG, &
& U1,V1,T1,Q1, &
& PSK,RBSOIL,FM,FH,TSEA,QSS,HEAT,EVAP,STRESS,SPD1,KPBL, &
& PRSI,DEL,PRSL,PRSLK,PHII,PHIL,RCL,DELTIM, &
& DUSFC,DVSFC,DTSFC,DQSFC,HPBL,HGAMT, &
#if (HWRF==1)
VAR_RIC,Ro,DKU,DKT,coef_ric_l,coef_ric_s,xland1, &
pert_pbl, ens_random_seed, ens_pblamp, &
#endif
RBCR,HGAMQ,ALPHA)
!
USE MODULE_GFS_MACHINE, ONLY : kind_phys
USE MODULE_GFS_PHYSCONS, grav => con_g, RD => con_RD, CP => con_CP &
&, HVAP => con_HVAP, ROG => con_ROG, FV => con_FVirt
implicit none
!
! include 'constant.h'
!
!
! Arguments
!
integer IX, IM, KM, ntrac, KPBL(IM)
!
real(kind=kind_phys) DELTIM
real :: ALPHA
#if (HWRF==1)
real :: VAR_RIC,coef_ric_l,coef_ric_s
integer,intent(in) :: ens_random_seed
real,intent(in) :: ens_pblamp
logical,intent(in) :: pert_pbl
#endif
real(kind=kind_phys) DV(IM,KM), DU(IM,KM), &
& TAU(IM,KM), RTG(IM,KM,ntrac), &
& U1(IX,KM), V1(IX,KM), &
& T1(IX,KM), Q1(IX,KM,ntrac), &
& PSK(IM), RBSOIL(IM), &
! & CD(IM), CH(IM), &
& FM(IM), FH(IM), &
& TSEA(IM), QSS(IM), &
& SPD1(IM), &
! & DPHI(IM), SPD1(IM), &
& PRSI(IX,KM+1), DEL(IX,KM), &
& PRSL(IX,KM), PRSLK(IX,KM), &
& PHII(IX,KM+1), PHIL(IX,KM), &
& RCL(IM), DUSFC(IM), &
& dvsfc(IM), dtsfc(IM), &
& DQSFC(IM), HPBL(IM), &
& HGAMT(IM), hgamq(IM), RBCR(IM)
#if (HWRF==1)
real(kind=kind_phys) RO(IM),xland1(IM)
#endif
!
! Locals
!
integer i,iprt,is,iun,k,kk,kmpbl,lond
! real(kind=kind_phys) betaq(IM), betat(IM), betaw(IM), &
real(kind=kind_phys) evap(IM), heat(IM), phih(IM), &
& phim(IM), rbdn(IM), rbup(IM), &
& the1(IM), stress(im), beta(im), &
& the1v(IM), thekv(IM), thermal(IM), &
& thesv(IM), ustar(IM), wscale(IM)
! & thesv(IM), ustar(IM), wscale(IM), zl1(IM)
!
real(kind=kind_phys) RDZT(IM,KM-1), &
& ZI(IM,KM+1), ZL(IM,KM), &
& DKO(IM,KM-1), &
& AL(IM,KM-1), AD(IM,KM), &
& AU(IM,KM-1), A1(IM,KM), &
& A2(IM,KM), THETA(IM,KM), &
& AT(IM,KM*(ntrac-1)),DKU(IM,KM-1),DKT(IM,KM-1),WSPM(IM,KM-1) ! RGF added WSPM
logical pblflg(IM), sfcflg(IM), stable(IM)
!
real(kind=kind_phys) aphi16, aphi5, bet1, bvf2, &
& cfac, conq, cont, conw, &
& conwrc, dk, dkmax, dkmin, &
& dq1, dsdz2, dsdzq, dsdzt, &
& dsig, dt, dthe1, dtodsd, &
& dtodsu, dw2, dw2min, g, &
& gamcrq, gamcrt, gocp, gor, gravi, &
& hol, pfac, prmax, prmin, prinv, &
& prnum, qmin, qtend, &
& rbint, rdt, rdz, rdzt1, &
& ri, rimin, rl2, rlam, &
& rone, rzero, sfcfrac, &
& sflux, shr2, spdk2, sri, &
& tem, ti, ttend, tvd, &
& tvu, utend, vk, vk2, &
& vpert, vtend, xkzo, zfac, &
& zfmin, zk, tem1
integer kLOC ! RGF
real xDKU ! RGF
!
PARAMETER(g=grav)
PARAMETER(GOR=G/RD,GOCP=G/CP)
PARAMETER(CONT=1000.*CP/G,CONQ=1000.*HVAP/G,CONW=1000./G)
PARAMETER(RLAM=150.,VK=0.4,VK2=VK*VK,PRMIN=1.0,PRMAX=4.)
PARAMETER(DW2MIN=0.0001,DKMIN=1.0,DKMAX=1000.,RIMIN=-100.)
PARAMETER(CFAC=7.8,PFAC=2.0,SFCFRAC=0.1)
PARAMETER(QMIN=1.E-8,XKZO=1.0,ZFMIN=1.E-8,APHI5=5.,APHI16=16.)
! PARAMETER(GAMCRT=3.,GAMCRQ=2.E-3)
PARAMETER(GAMCRT=3.,GAMCRQ=0.)
PARAMETER(RZERO=0.,RONE=1.)
PARAMETER(IUN=84)
#if HWRF==1
real*8 :: ran1 !zhang
real :: rr
logical,save :: pert_pbl_local !zhang
integer,save :: ens_random_seed_local !zhang
real,save :: ens_pblamp_local !zhang
data ens_random_seed_local/0/
!zz print*, 'zhang in pbl==========='
if ( ens_random_seed_local .eq. 0 ) then
pert_pbl_local=pert_pbl
ens_random_seed_local=ens_random_seed
ens_pblamp_local=ens_pblamp
!zz print*, "zhang in pbl= one time ", pert_pbl_local, ens_random_seed_local, ens_pblamp_local
endif
!zz print*, "zhang in pbl=",pert_pbl_local, ens_random_seed_local, ens_pblamp_local
#endif
!
!
!-----------------------------------------------------------------------
!
601 FORMAT(1X,' MONINP LAT LON STEP HOUR ',3I6,F6.1)
602 FORMAT(1X,' K',' Z',' T',' TH', &
& ' TVH',' Q',' U',' V', &
& ' SP')
603 FORMAT(1X,I5,8F9.1)
604 FORMAT(1X,' SFC',9X,F9.1,18X,F9.1)
605 FORMAT(1X,' K ZL SPD2 THEKV THE1V' &
& ,' THERMAL RBUP')
606 FORMAT(1X,I5,6F8.2)
607 FORMAT(1X,' KPBL HPBL FM FH HGAMT', &
& ' HGAMQ WS USTAR CD CH')
608 FORMAT(1X,I5,9F8.2)
609 FORMAT(1X,' K PR DKT DKU ',I5,3F8.2)
610 FORMAT(1X,' K PR DKT DKU ',I5,3F8.2,' L2 RI T2', &
& ' SR2 ',2F8.2,2E10.2)
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
! COMPUTE PRELIMINARY VARIABLES
!
if (IX .lt. im) stop
!
IPRT = 0
IF(IPRT.EQ.1) THEN
!!! LATD = 0
LOND = 0
ELSE
!!! LATD = 0
LOND = 0
ENDIF
!
! define critical Richardson number by KWON: Vickers and Mahart(2004) J. Appl. Meteo.
! coef_ric=0.16 originally but it may too small: controled by namelist=0.25
! Land and Ocean points are treated differently
! by Kwon
!
do i=1,im
RBCR(I) = 0.25
#if (HWRF==1)
IF(var_ric.eq.1.) THEN
IF(xland1(i).eq.1) RBCR(I) = coef_ric_l*(1.E-7*Ro(I))**(-0.18)
IF(xland1(i).eq.2) RBCR(I) = coef_ric_s*(1.E-7*Ro(I))**(-0.18)
! write(0,*) 'xland1 coef_ric_l coef_ric_s ',xland1(i),coef_ric_l,coef_ric_s
ENDIF
IF(RBCR(I).GT.0.5) RBCR(I)=0.5 !set upper limit Suggsted by Han
#endif
enddo
!
gravi = 1.0 / grav
DT = 2. * DELTIM
RDT = 1. / DT
KMPBL = KM / 2
!
do k=1,km
do i=1,im
zi(i,k) = phii(i,k) * gravi
zl(i,k) = phil(i,k) * gravi
enddo
enddo
!
do k=1,kmpbl
do i=1,im
theta(i,k) = t1(i,k) * psk(i) / prslk(i,k)
enddo
enddo
!
DO K = 1,KM-1
DO I=1,IM
RDZT(I,K) = GOR * PRSI(I,K+1) / (PRSL(I,K) - PRSL(I,K+1))
ENDDO
ENDDO
!
DO I = 1,IM
DUSFC(I) = 0.
DVSFC(I) = 0.
DTSFC(I) = 0.
DQSFC(I) = 0.
HGAMT(I) = 0.
HGAMQ(I) = 0.
WSCALE(I) = 0.
KPBL(I) = 1
HPBL(I) = ZI(I,2)
PBLFLG(I) = .TRUE.
SFCFLG(I) = .TRUE.
IF(RBSOIL(I).GT.0.0) SFCFLG(I) = .FALSE.
ENDDO
!!
DO I=1,IM
RDZT1 = GOR * prSL(i,1) / DEL(i,1)
! BET1 = DT*RDZT1*SPD1(I)/T1(I,1)
BETA(I) = DT*RDZT1/T1(I,1)
! BETAW(I) = BET1*CD(I)
! BETAT(I) = BET1*CH(I)
! BETAQ(I) = DPHI(I)*BETAT(I)
ENDDO
!
DO I=1,IM
! ZL1(i) = 0.-(T1(I,1)+TSEA(I))/2.*LOG(PRSL(I,1)/PRSI(I,1))*ROG
! USTAR(I) = SQRT(CD(I)*SPD1(I)**2)
USTAR(I) = SQRT(STRESS(I))
ENDDO
!
DO I=1,IM
THESV(I) = TSEA(I)*(1.+FV*MAX(QSS(I),QMIN))
THE1(I) = THETA(I,1)
THE1V(I) = THE1(I)*(1.+FV*MAX(Q1(I,1,1),QMIN))
THERMAL(I) = THE1V(I)
! DTHE1 = (THE1(I)-TSEA(I))
! DQ1 = (MAX(Q1(I,1,1),QMIN) - MAX(QSS(I),QMIN))
! HEAT(I) = -CH(I)*SPD1(I)*DTHE1
! EVAP(I) = -CH(I)*SPD1(I)*DQ1
ENDDO
!
!
! COMPUTE THE FIRST GUESS OF PBL HEIGHT
!
DO I=1,IM
STABLE(I) = .FALSE.
! ZL(i,1) = ZL1(i)
RBUP(I) = RBSOIL(I)
ENDDO
DO K = 2, KMPBL
DO I = 1, IM
IF(.NOT.STABLE(I)) THEN
RBDN(I) = RBUP(I)
! ZL(I,k) = ZL(I,K-1) - (T1(i,k)+T1(i,K-1))/2 *
! & LOG(PRSL(I,K)/PRSL(I,K-1)) * ROG
THEKV(I) = THETA(i,k)*(1.+FV*MAX(Q1(i,k,1),QMIN))
SPDK2 = MAX(RCL(i)*(U1(i,k)*U1(i,k)+V1(i,k)*V1(i,k)),RONE)
RBUP(I) = (THEKV(I)-THE1V(I))*(G*ZL(I,k)/THE1V(I))/SPDK2
KPBL(I) = K
STABLE(I) = RBUP(I).GT.RBCR(I)
ENDIF
ENDDO
ENDDO
!
DO I = 1,IM
K = KPBL(I)
IF(RBDN(I).GE.RBCR(I)) THEN
RBINT = 0.
ELSEIF(RBUP(I).LE.RBCR(I)) THEN
RBINT = 1.
ELSE
RBINT = (RBCR(I)-RBDN(I))/(RBUP(I)-RBDN(I))
ENDIF
HPBL(I) = ZL(I,K-1) + RBINT*(ZL(I,K)-ZL(I,K-1))
IF(HPBL(I).LT.ZI(I,KPBL(I))) KPBL(I) = KPBL(I) - 1
ENDDO
!!
DO I=1,IM
HOL = MAX(RBSOIL(I)*FM(I)*FM(I)/FH(I),RIMIN)
IF(SFCFLG(I)) THEN
HOL = MIN(HOL,-ZFMIN)
ELSE
HOL = MAX(HOL,ZFMIN)
ENDIF
!
! HOL = HOL*HPBL(I)/ZL1(I)*SFCFRAC
HOL = HOL*HPBL(I)/ZL(I,1)*SFCFRAC
IF(SFCFLG(I)) THEN
! PHIM = (1.-APHI16*HOL)**(-1./4.)
! PHIH = (1.-APHI16*HOL)**(-1./2.)
TEM = 1.0 / (1. - APHI16*HOL)
PHIH(I) = SQRT(TEM)
PHIM(I) = SQRT(PHIH(I))
ELSE
PHIM(I) = (1.+APHI5*HOL)
PHIH(I) = PHIM(I)
ENDIF
WSCALE(I) = USTAR(I)/PHIM(I)
WSCALE(I) = MIN(WSCALE(I),USTAR(I)*APHI16)
WSCALE(I) = MAX(WSCALE(I),USTAR(I)/APHI5)
ENDDO
!
! COMPUTE THE SURFACE VARIABLES FOR PBL HEIGHT ESTIMATION
! UNDER UNSTABLE CONDITIONS
!
DO I = 1,IM
SFLUX = HEAT(I) + EVAP(I)*FV*THE1(I)
IF(SFCFLG(I).AND.SFLUX.GT.0.0) THEN
HGAMT(I) = MIN(CFAC*HEAT(I)/WSCALE(I),GAMCRT)
HGAMQ(I) = MIN(CFAC*EVAP(I)/WSCALE(I),GAMCRQ)
VPERT = HGAMT(I) + FV*THE1(I)*HGAMQ(I)
VPERT = MIN(VPERT,GAMCRT)
THERMAL(I) = THERMAL(I) + MAX(VPERT,RZERO)
HGAMT(I) = MAX(HGAMT(I),RZERO)
HGAMQ(I) = MAX(HGAMQ(I),RZERO)
ELSE
PBLFLG(I) = .FALSE.
ENDIF
ENDDO
!
DO I = 1,IM
IF(PBLFLG(I)) THEN
KPBL(I) = 1
HPBL(I) = ZI(I,2)
ENDIF
ENDDO
!
! ENHANCE THE PBL HEIGHT BY CONSIDERING THE THERMAL
!
DO I = 1, IM
IF(PBLFLG(I)) THEN
STABLE(I) = .FALSE.
RBUP(I) = RBSOIL(I)
ENDIF
ENDDO
DO K = 2, KMPBL
DO I = 1, IM
IF(.NOT.STABLE(I).AND.PBLFLG(I)) THEN
RBDN(I) = RBUP(I)
! ZL(I,k) = ZL(I,K-1) - (T1(i,k)+T1(i,K-1))/2 *
! & LOG(PRSL(I,K)/PRSL(I,K-1)) * ROG
THEKV(I) = THETA(i,k)*(1.+FV*MAX(Q1(i,k,1),QMIN))
SPDK2 = MAX(RCL(i)*(U1(i,k)*U1(i,k)+V1(i,k)*V1(i,k)),RONE)
RBUP(I) = (THEKV(I)-THERMAL(I))*(G*ZL(I,k)/THE1V(I))/SPDK2
KPBL(I) = K
STABLE(I) = RBUP(I).GT.RBCR(I)
ENDIF
ENDDO
ENDDO
!
DO I = 1,IM
IF(PBLFLG(I)) THEN
K = KPBL(I)
IF(RBDN(I).GE.RBCR(I)) THEN
RBINT = 0.
ELSEIF(RBUP(I).LE.RBCR(I)) THEN
RBINT = 1.
ELSE
RBINT = (RBCR(I)-RBDN(I))/(RBUP(I)-RBDN(I))
ENDIF
HPBL(I) = ZL(I,K-1) + RBINT*(ZL(I,k)-ZL(I,K-1))
#if (HWRF==1)
!zhang adding PBL perturtion
if ( pert_pbl_local ) then
rr=(2.0*ens_pblamp_local*ran1(ens_random_seed_local)-ens_pblamp_local)
print*, "zhang inside the loop", rr, ens_pblamp_local,ens_random_seed_local
HPBL(I) = HPBL(I)*(1.0+rr)
endif
#endif
IF(HPBL(I).LT.ZI(I,KPBL(I))) KPBL(I) = KPBL(I) - 1
IF(KPBL(I).LE.1) PBLFLG(I) = .FALSE.
ENDIF
ENDDO
!!
!
! COMPUTE DIFFUSION COEFFICIENTS BELOW PBL
!
#if (HWRF==1)
! -------------------------------------------------------------------------------------
! begin RGF modifications
! this is version MOD05
! RGF determine wspd at roughly 500 m above surface, or as close as possible, reuse SPDK2
! zi(i,k) is AGL, right? May not matter if applied only to water grid points
if(ALPHA.lt.0)then
DO I=1,IM
SPDK2 = 0.
WSPM(i,1) = 0.
DO K = 1, KMPBL ! kmpbl is like a max possible pbl height
if(zi(i,k).le.500.and.zi(i,k+1).gt.500.)then ! find level bracketing 500 m
SPDK2 = SQRT(U1(i,k)*U1(i,k)+V1(i,k)*V1(i,k)) ! wspd near 500 m
WSPM(i,1) = SPDK2/0.6 ! now the Km limit for 500 m. just store in K=1
WSPM(i,2) = float(k) ! height of level at gridpoint i. store in K=2
! if(i.eq.25) print *,' IK ',i,k,' ZI ',zi(i,k), ' WSPM1 ',wspm(i,1),' KMPBL ',kmpbl,' KPBL ',kpbl(i)
endif
ENDDO
ENDDO ! i
endif ! ALPHA < 0
#endif
DO I=1,IM ! RGF SWAPPED ORDER. TESTED - NO IMPACT
DO K = 1, KMPBL
! First guess at DKU. If alpha >= 0, this is the only loop executed
IF(KPBL(I).GT.K) THEN ! first guess DKU, this is original loop
PRINV = 1.0 / (PHIH(I)/PHIM(I)+CFAC*VK*.1)
PRINV = MIN(PRINV,PRMAX)
PRINV = MAX(PRINV,PRMIN)
! ZFAC = MAX((1.-(ZI(I,K+1)-ZL1(I))/ &
! & (HPBL(I)-ZL1(I))), ZFMIN)
ZFAC = MAX((1.-(ZI(I,K+1)-ZL(I,1))/ &
& (HPBL(I)-ZL(I,1))), ZFMIN)
!
! alpha factor (0-1.0) is multiplied to profile function to reduce the effect
! height of the Hurricane Boundary Layer. This is gopal's doing
!
DKU(i,k) = XKZO + WSCALE(I)*VK*ZI(I,K+1) &
& *ABS(ALPHA)* ZFAC**PFAC
! if alpha = -1, the above provides the first guess for DKU, based on assumption alpha = +1
! (other values of alpha < 0 can also be applied)
! if alpha > 0, the above applies the alpha suppression factor and we are finished
! if(i.eq.25) print *,' I25 K ',k,' ORIG DKU ',dku(i,k)
DKT(i,k) = DKU(i,k)*PRINV
DKO(i,k) = (DKU(i,k)-XKZO)*PRINV
DKU(i,k) = MIN(DKU(i,k),DKMAX)
DKU(i,k) = MAX(DKU(i,k),DKMIN)