forked from metavoiceio/metavoice-src
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fast_inference.py
143 lines (125 loc) · 5.41 KB
/
fast_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import os
import shutil
import tempfile
import time
from pathlib import Path
import librosa
import torch
from huggingface_hub import snapshot_download
from fam.llm.adapters import FlattenedInterleavedEncodec2Codebook
from fam.llm.decoders import EncodecDecoder
from fam.llm.fast_inference_utils import build_model, main
from fam.llm.inference import (
EncodecDecoder,
InferenceConfig,
Model,
TiltedEncodec,
TrainedBPETokeniser,
get_cached_embedding,
get_cached_file,
get_enhancer,
)
from fam.llm.utils import (
check_audio_file,
get_default_dtype,
get_device,
normalize_text,
)
class TTS:
END_OF_AUDIO_TOKEN = 1024
def __init__(
self, model_name: str = "metavoiceio/metavoice-1B-v0.1", *, seed: int = 1337, output_dir: str = "outputs"
):
"""
model_name (str): refers to the model identifier from the Hugging Face Model Hub (https://huggingface.co/metavoiceio)
"""
# NOTE: this needs to come first so that we don't change global state when we want to use
# the torch.compiled-model.
self._dtype = get_default_dtype()
self._device = get_device()
self._model_dir = snapshot_download(repo_id=model_name)
self.first_stage_adapter = FlattenedInterleavedEncodec2Codebook(end_of_audio_token=self.END_OF_AUDIO_TOKEN)
self.output_dir = output_dir
os.makedirs(self.output_dir, exist_ok=True)
second_stage_ckpt_path = f"{self._model_dir}/second_stage.pt"
config_second_stage = InferenceConfig(
ckpt_path=second_stage_ckpt_path,
num_samples=1,
seed=seed,
device=self._device,
dtype=self._dtype,
compile=False,
init_from="resume",
output_dir=self.output_dir,
)
data_adapter_second_stage = TiltedEncodec(end_of_audio_token=self.END_OF_AUDIO_TOKEN)
self.llm_second_stage = Model(
config_second_stage, TrainedBPETokeniser, EncodecDecoder, data_adapter_fn=data_adapter_second_stage.decode
)
self.enhancer = get_enhancer("df")
self.precision = {"float16": torch.float16, "bfloat16": torch.bfloat16}[self._dtype]
self.model, self.tokenizer, self.smodel, self.model_size = build_model(
precision=self.precision,
checkpoint_path=Path(f"{self._model_dir}/first_stage.pt"),
spk_emb_ckpt_path=Path(f"{self._model_dir}/speaker_encoder.pt"),
device=self._device,
compile=True,
compile_prefill=True,
)
def synthesise(self, text: str, spk_ref_path: str, top_p=0.95, guidance_scale=3.0, temperature=1.0) -> str:
"""
text: Text to speak
spk_ref_path: Path to speaker reference file. Min. 30s of audio required. Supports both local paths & public URIs. Audio formats: wav, flac & mp3
top_p: Top p for sampling applied to first-stage model. Range [0.9, 1.0] are good. This is a measure of speech stability - improves text following for a challenging speaker
guidance_scale: Guidance scale [1.0, 3.0] for sampling. This is a measure of speaker similarity - how closely to match speaker identity and speech style.
temperature: Temperature for sampling applied to both LLMs (first & second stage)
returns: path to speech .wav file
"""
text = normalize_text(text)
spk_ref_path = get_cached_file(spk_ref_path)
check_audio_file(spk_ref_path)
spk_emb = get_cached_embedding(
spk_ref_path,
self.smodel,
).to(device=self._device, dtype=self.precision)
start = time.time()
# first stage LLM
tokens = main(
model=self.model,
tokenizer=self.tokenizer,
model_size=self.model_size,
prompt=text,
spk_emb=spk_emb,
top_p=torch.tensor(top_p, device=self._device, dtype=self.precision),
guidance_scale=torch.tensor(guidance_scale, device=self._device, dtype=self.precision),
temperature=torch.tensor(temperature, device=self._device, dtype=self.precision),
)
_, extracted_audio_ids = self.first_stage_adapter.decode([tokens])
b_speaker_embs = spk_emb.unsqueeze(0)
# second stage LLM + multi-band diffusion model
wav_files = self.llm_second_stage(
texts=[text],
encodec_tokens=[torch.tensor(extracted_audio_ids, dtype=torch.int32, device=self._device).unsqueeze(0)],
speaker_embs=b_speaker_embs,
batch_size=1,
guidance_scale=None,
top_p=None,
top_k=200,
temperature=1.0,
max_new_tokens=None,
)
# enhance using deepfilternet
wav_file = wav_files[0]
with tempfile.NamedTemporaryFile(suffix=".wav") as enhanced_tmp:
self.enhancer(str(wav_file) + ".wav", enhanced_tmp.name)
shutil.copy2(enhanced_tmp.name, str(wav_file) + ".wav")
print(f"\nSaved audio to {wav_file}.wav")
# calculating real-time factor (RTF)
time_to_synth_s = time.time() - start
audio, sr = librosa.load(str(wav_file) + ".wav")
duration_s = librosa.get_duration(y=audio, sr=sr)
print(f"\nTotal time to synth (s): {time_to_synth_s}")
print(f"Real-time factor: {time_to_synth_s / duration_s:.2f}")
return str(wav_file) + ".wav"
if __name__ == "__main__":
tts = TTS()