forked from metavoiceio/metavoice-src
-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
184 lines (143 loc) · 6.06 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import os
import sys
project_root = os.path.dirname(os.path.abspath(__file__))
if project_root not in sys.path:
sys.path.insert(0, project_root)
import gradio as gr
from fam.llm.fast_inference import TTS
from fam.llm.utils import check_audio_file
#### setup model
TTS_MODEL = TTS()
#### setup interface
RADIO_CHOICES = ["Preset voices", "Upload target voice (atleast 30s)"]
MAX_CHARS = 220
PRESET_VOICES = {
# female
"Bria": "https://cdn.themetavoice.xyz/speakers%2Fbria.mp3",
# male
"Alex": "https://cdn.themetavoice.xyz/speakers/alex.mp3",
"Jacob": "https://cdn.themetavoice.xyz/speakers/jacob.wav",
}
def denormalise_top_p(top_p):
# returns top_p in the range [0.9, 1.0]
return round(0.9 + top_p / 100, 2)
def denormalise_guidance(guidance):
# returns guidance in the range [1.0, 3.0]
return 1 + ((guidance - 1) * (3 - 1)) / (5 - 1)
def _check_file_size(path):
if not path:
return
filesize = os.path.getsize(path)
filesize_mb = filesize / 1024 / 1024
if filesize_mb >= 50:
raise gr.Error(f"Please upload a sample less than 20MB for voice cloning. Provided: {round(filesize_mb)} MB")
def _handle_edge_cases(to_say, upload_target):
if not to_say:
raise gr.Error("Please provide text to synthesise")
if len(to_say) > MAX_CHARS:
gr.Warning(
f"Max {MAX_CHARS} characters allowed. Provided: {len(to_say)} characters. Truncating and generating speech...Result at the end can be unstable as a result."
)
if not upload_target:
return
check_audio_file(upload_target) # check file duration to be atleast 30s
_check_file_size(upload_target)
def tts(to_say, top_p, guidance, toggle, preset_dropdown, upload_target):
try:
d_top_p = denormalise_top_p(top_p)
d_guidance = denormalise_guidance(guidance)
_handle_edge_cases(to_say, upload_target)
to_say = to_say if len(to_say) < MAX_CHARS else to_say[:MAX_CHARS]
return TTS_MODEL.synthesise(
text=to_say,
spk_ref_path=PRESET_VOICES[preset_dropdown] if toggle == RADIO_CHOICES[0] else upload_target,
top_p=d_top_p,
guidance_scale=d_guidance,
)
except Exception as e:
raise gr.Error(f"Something went wrong. Reason: {str(e)}")
def change_voice_selection_layout(choice):
if choice == RADIO_CHOICES[0]:
return [gr.update(visible=True), gr.update(visible=False)]
return [gr.update(visible=False), gr.update(visible=True)]
title = """
<picture>
<source srcset="https://cdn.themetavoice.xyz/banner_light_transparent.png" media="(prefers-color-scheme: dark)" />
<img alt="MetaVoice logo" src="https://cdn.themetavoice.xyz/banner_light_transparent.png" style="width: 20%; margin: 0 auto;" />
</picture>
\n# TTS by MetaVoice-1B
"""
description = """
<strong>MetaVoice-1B</strong> is a 1.2B parameter base model for TTS (text-to-speech). It has been built with the following priorities:
\n
* <strong>Emotional speech rhythm and tone</strong> in English.
* <strong>Zero-shot cloning for American & British voices</strong>, with 30s reference audio.
* Support for <strong>voice cloning with finetuning</strong>.
* We have had success with as little as 1 minute training data for Indian speakers.
* Support for <strong>long-form synthesis</strong>.
We are releasing the model under [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0). See [Github](https://github.com/metavoiceio/metavoice-src) for details and to contribute.
"""
with gr.Blocks(title="TTS by MetaVoice") as demo:
gr.Markdown(title)
with gr.Row():
gr.Markdown(description)
with gr.Row():
with gr.Column():
to_say = gr.TextArea(
label=f"What should I say!? (max {MAX_CHARS} characters).",
lines=4,
value="This is a demo of text to speech by MetaVoice-1B, an open-source foundational audio model by MetaVoice.",
)
with gr.Row(), gr.Column():
# voice settings
top_p = gr.Slider(
value=5.0,
minimum=0.0,
maximum=10.0,
step=1.0,
label="Speech Stability - improves text following for a challenging speaker",
)
guidance = gr.Slider(
value=5.0,
minimum=1.0,
maximum=5.0,
step=1.0,
label="Speaker similarity - How closely to match speaker identity and speech style.",
)
# voice select
toggle = gr.Radio(choices=RADIO_CHOICES, label="Choose voice", value=RADIO_CHOICES[0])
with gr.Row(visible=True) as row_1:
preset_dropdown = gr.Dropdown(
PRESET_VOICES.keys(), label="Preset voices", value=list(PRESET_VOICES.keys())[0]
)
with gr.Accordion("Preview: Preset voices", open=False):
for label, path in PRESET_VOICES.items():
gr.Audio(value=path, label=label)
with gr.Row(visible=False) as row_2:
upload_target = gr.Audio(
sources=["upload"],
type="filepath",
label="Upload a clean sample to clone. Sample should contain 1 speaker, be between 30-90 seconds and not contain background noise.",
)
toggle.change(
change_voice_selection_layout,
inputs=toggle,
outputs=[row_1, row_2],
)
with gr.Column():
speech = gr.Audio(
type="filepath",
label="MetaVoice-1B says...",
)
submit = gr.Button("Generate Speech")
submit.click(
fn=tts,
inputs=[to_say, top_p, guidance, toggle, preset_dropdown, upload_target],
outputs=speech,
)
demo.queue()
demo.launch(
favicon_path=os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets/favicon.ico"),
server_name="0.0.0.0",
server_port=7861,
)