-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
152 lines (112 loc) · 4.34 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
from __future__ import print_function
import tensorflow as tf
import keras
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, AveragePooling2D, BatchNormalization
from keras.layers import Dense, Activation, Dropout, Flatten
from keras.preprocessing import image
from keras.preprocessing.image import ImageDataGenerator
from sklearn.metrics import classification_report, confusion_matrix
import numpy as np
import matplotlib.pyplot as plt
config = tf.ConfigProto( device_count = {'GPU': 0 , 'CPU': 56} ) #max: 1 gpu, 56 cpu
sess = tf.Session(config=config)
keras.backend.set_session(sess)
num_classes = 7 #angry, disgust, fear, happy, sad, surprise, neutral
batch_size = 256
epochs = 8
with open("/home/ubantu/Desktop/FER/fer2013.csv") as f:
content = f.readlines()
lines = np.array(content)
num_of_instances = lines.size
print("number of instances: ",num_of_instances)
x_train, y_train, x_test, y_test = [], [], [], []
for i in range(1,num_of_instances):
try:
emotion, img, usage = lines[i].split(",")
val = img.split(" ")
pixels = np.array(val, 'float32')
emotion = keras.utils.to_categorical(emotion, num_classes)
if 'Training' in usage:
y_train.append(emotion)
x_train.append(pixels)
elif 'PublicTest' in usage:
y_test.append(emotion)
x_test.append(pixels)
except:
print("", end="")
x_train = np.array(x_train, 'float32')
y_train = np.array(y_train, 'float32')
x_test = np.array(x_test, 'float32')
y_test = np.array(y_test, 'float32')
x_train /= 255 #normalize inputs between [0, 1]
x_test /= 255
x_train = x_train.reshape(x_train.shape[0], 48, 48, 1)
x_train = x_train.astype('float32')
x_test = x_test.reshape(x_test.shape[0], 48, 48, 1)
x_test = x_test.astype('float32')
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
model = Sequential()
#1st convolution layer
model.add(Conv2D(64, (4, 4), activation='relu', padding="same", input_shape=(48,48,1)))
model.add(MaxPooling2D(pool_size=(4,4), strides=(2, 2)))
#2nd convolution layer
model.add(Conv2D(filters=64, kernel_size=(4, 4),strides=(1,1), padding="same", activation='relu'))
BatchNormalization()
model.add(Conv2D(64, kernel_size=(4, 4),strides=(1,1), padding="same", activation='relu'))
BatchNormalization()
model.add(MaxPooling2D(pool_size=(4,4), strides=(2, 2)))
model.add(Dropout(0.4))
#3rd convolution layer
model.add(Conv2D(128, (4, 4),strides=(1,1), padding="same", activation='relu'))
BatchNormalization()
model.add(Conv2D(128, (4, 4),strides=(1,1),padding="same", activation='relu'))
BatchNormalization()
model.add(MaxPooling2D(pool_size=(4,4), strides=(2, 2)))
model.add(Dropout(0.4))
model.add(Flatten())
#fully connected neural networks
model.add(Dense(1024, activation='relu'))
model.add(Dropout(0.2))
BatchNormalization()
model.add(Dense(1024, activation='relu'))
model.add(Dropout(0.4))
BatchNormalization()
model.add(Dense(num_classes, activation='softmax'))
gen = ImageDataGenerator()
train_generator = gen.flow(x_train, y_train, batch_size=batch_size)
model.compile(loss='categorical_crossentropy', optimizer=keras.optimizers.Adam(), metrics=['accuracy'])
history = model.fit_generator(train_generator, batch_size, epochs=epochs, validation_data=(x_test, y_test))
train_score = model.evaluate(x_train, y_train, verbose=0)
print('Train loss:', train_score[0])
print('Train accuracy:', 100*train_score[1])
test_score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', test_score[0])
print('Test accuracy:', 100*test_score[1])
#make predictions for test set
predictions = model.predict(x_test)
pred_list = []; actual_list = []
for i in predictions:
pred_list.append(np.argmax(i))
for i in y_test:
actual_list.append(np.argmax(i))
cm = confusion_matrix(actual_list, pred_list)
print(cm)
print(history.history.keys())
#model.summary()
accuracy = history.history['acc']
val_accuracy = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(len(accuracy))
plt.plot(epochs, accuracy, 'bo', label='Training accuracy')
plt.plot(epochs, val_accuracy, 'b', label='Validation accuracy')
plt.title('Training and validation accuracy')
plt.legend()
plt.figure()
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()
plt.show()