forked from ed-donner/llm_engineering
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrades_gemini.py
534 lines (472 loc) · 23.8 KB
/
trades_gemini.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
# tickers is a list of stock tickers
import tickers
# prices is a dict; the key is a ticker and the value is a list of historic prices, today first
import prices
# Trade represents a decision to buy or sell a quantity of a ticker
import Trade
import random
import numpy as np
def trade2():
# Buy the stock with the highest price today
ticker = max(prices, key=lambda t: prices[t][0]) # Find ticker with highest price
return [Trade(ticker, random.randrange(1, 10))] # Buy a small quantity
def trade3():
# Sell the stock with the lowest price today
ticker = min(prices, key=lambda t: prices[t][0])
return [Trade(ticker, random.randrange(-10, -1))]
def trade4():
# Buy the stock with the largest percent increase today
changes = {t: (prices[t][0] - prices[t][1]) / prices[t][1] for t in prices}
ticker = max(changes, key=changes.get)
return [Trade(ticker, random.randrange(1, 10))]
def trade5():
# Sell the stock with the largest percent decrease today
changes = {t: (prices[t][0] - prices[t][1]) / prices[t][1] for t in prices}
ticker = min(changes, key=changes.get)
return [Trade(ticker, random.randrange(-10, -1))]
def trade6():
# Buy the 3 stocks with the highest moving average over the last 5 days
mvgs = {t: np.mean(prices[t][:5]) for t in prices}
top_tickers = sorted(mvgs, key=mvgs.get, reverse=True)[:3]
return [Trade(t, random.randrange(1, 5)) for t in top_tickers]
def trade7():
# Sell the 3 stocks with the lowest moving average over the last 5 days
mvgs = {t: np.mean(prices[t][:5]) for t in prices}
bottom_tickers = sorted(mvgs, key=mvgs.get)[:3]
return [Trade(t, random.randrange(-5, -1)) for t in bottom_tickers]
def trade8():
# Randomly buy or sell a single stock based on a coin flip
ticker = random.choice(tickers)
action = random.choice([-1, 1]) # -1 for sell, 1 for buy
return [Trade(ticker, action * random.randrange(1, 10))]
def trade9():
# Diversify: Buy a small amount of 5 random stocks
chosen_tickers = random.sample(tickers, 5)
return [Trade(t, random.randrange(1, 3)) for t in chosen_tickers]
def trade10():
# Follow the trend: If the market is up today, buy, else sell
market_change = (prices[tickers[0]][0] - prices[tickers[0]][1]) / prices[tickers[0]][1]
action = 1 if market_change > 0 else -1
ticker = random.choice(tickers)
return [Trade(ticker, action * random.randrange(1, 10))]
def trade11():
# Mean Reversion: Buy the 2 stocks that fell the most yesterday, hoping they rebound
yesterday_changes = {t: (prices[t][1] - prices[t][2]) / prices[t][2] for t in prices}
bottom_tickers = sorted(yesterday_changes, key=yesterday_changes.get)[:2]
return [Trade(t, random.randrange(1, 5)) for t in bottom_tickers]
def trade12():
# Momentum: Short the 2 stocks that rose the most yesterday, expecting a pullback
yesterday_changes = {t: (prices[t][1] - prices[t][2]) / prices[t][2] for t in prices}
top_tickers = sorted(yesterday_changes, key=yesterday_changes.get, reverse=True)[:2]
return [Trade(t, random.randrange(-5, -1)) for t in top_tickers]
def trade13():
# Pairs Trading: Long one stock, short another with a similar price history
correlations = np.corrcoef([prices[t] for t in tickers])
i, j = np.unravel_index(np.argmax(correlations), correlations.shape)
return [Trade(tickers[i], 1), Trade(tickers[j], -1)]
def trade14():
# Relative Strength: Go long on the strongest stock, short the weakest
performances = {t: (prices[t][0] - prices[t][-1]) / prices[t][-1] for t in prices}
strongest = max(performances, key=performances.get)
weakest = min(performances, key=performances.get)
return [Trade(strongest, 1), Trade(weakest, -1)]
def trade15():
# Calendar Spread: Buy this month's option, sell next month's (same strike
# This is a simplified representation, as actual option trading is more complex
ticker = random.choice(tickers)
return [Trade(f"{ticker}_OPT_THIS_MONTH", 1), Trade(f"{ticker}_OPT_NEXT_MONTH", -1)]
def trade16():
# Straddle: Buy both a call and put option on the same stock (same strike
ticker = random.choice(tickers)
strike = prices[ticker][0] # Use the current price as a simple strike price
return [Trade(f"{ticker}_CALL_{strike}", 1), Trade(f"{ticker}_PUT_{strike}", 1)]
def trade17():
# Breakout: Buy if a stock breaks above its 52-week high
ticker = random.choice(tickers)
if prices[ticker][0] > max(prices[ticker]):
return [Trade(ticker, random.randrange(1, 10))]
else:
return []
def trade18():
# Volatility: If market volatility is high, sell (expecting it to decrease
market_volatility = np.std([prices[t][0] / prices[t][1] for t in tickers])
if market_volatility > 0.05: # You'd adjust this threshold based on your risk tolerance
ticker = random.choice(tickers)
return [Trade(ticker, random.randrange(-10, -1))]
else:
return []
def trade19():
# Golden Cross: Buy if the short-term moving average crosses above the long-term
ticker = random.choice(tickers)
short_ma = np.mean(prices[ticker][:5])
long_ma = np.mean(prices[ticker][:20])
if short_ma > long_ma and short_ma - long_ma < 0.01: # Small margin to avoid false signals
return [Trade(ticker, random.randrange(1, 10))]
else:
return []
def trade20():
# Death Cross: Sell if the short-term moving average crosses below the long-term
ticker = random.choice(tickers)
short_ma = np.mean(prices[ticker][:5])
long_ma = np.mean(prices[ticker][:20])
if short_ma < long_ma and long_ma - short_ma < 0.01:
return [Trade(ticker, random.randrange(-10, -1))]
else:
return []
def trade21():
# Correlated Pairs Buy: Buy a pair of stocks that have historically moved together
correlations = np.corrcoef([prices[t] for t in tickers])
i, j = np.unravel_index(np.argmax(correlations), correlations.shape)
return [Trade(tickers[i], 1), Trade(tickers[j], 1)]
def trade22():
# Correlated Pairs Sell: Sell a pair of stocks that have historically moved together
correlations = np.corrcoef([prices[t] for t in tickers])
i, j = np.unravel_index(np.argmax(correlations), correlations.shape)
return [Trade(tickers[i], -1), Trade(tickers[j], -1)]
def trade23():
# Contrarian Pairs Buy: Buy a stock that's down while its correlated pair is up
correlations = np.corrcoef([prices[t] for t in tickers])
i, j = np.unravel_index(np.argmax(correlations), correlations.shape)
if prices[tickers[i]][0] < prices[tickers[i]][1] and prices[tickers[j]][0] > prices[tickers[j]][1]:
return [Trade(tickers[i], 1)]
else:
return []
def trade24():
# Contrarian Pairs Sell: Sell a stock that's up while its correlated pair is down
correlations = np.corrcoef([prices[t] for t in tickers])
i, j = np.unravel_index(np.argmax(correlations), correlations.shape)
if prices[tickers[i]][0] > prices[tickers[i]][1] and prices[tickers[j]][0] < prices[tickers[j]][1]:
return [Trade(tickers[i], -1)]
else:
return []
def trade25():
# Correlation Reversal: Buy a stock that's recently become less correlated with the market
# This is a simplified version, you'd likely use a rolling correlation window
market_prices = [prices[t] for t in tickers]
correlations_today = np.corrcoef(market_prices)
correlations_yesterday = np.corrcoef([p[1:] for p in market_prices])
diffs = correlations_today - correlations_yesterday
i, j = np.unravel_index(np.argmin(diffs), diffs.shape)
if i != j: # Ensure we're not comparing a stock to itself
return [Trade(tickers[i], 1)]
else:
return []
def trade26():
# Sector Rotation: Buy the top 2 stocks from the sector that's most correlated with the market
# Assuming you have sector data (e.g., 'sector_map' dict: ticker -> sector)
sector_returns = {s: np.mean([(prices[t][0] - prices[t][1]) / prices[t][1] for t in tickers if sector_map[t] == s]) for s in set(sector_map.values())}
top_sector = max(sector_returns, key=sector_returns.get)
top_tickers_in_sector = sorted([(t, prices[t][0]) for t in tickers if sector_map[t] == top_sector], key=lambda x: x[1], reverse=True)[:2]
return [Trade(t, 1) for t, _ in top_tickers_in_sector]
def trade27():
# Beta-Weighted Portfolio: Allocate more to stocks with higher betas (more volatile
# You'd need historical market data to calculate betas
betas = {t: random.uniform(0.5, 2) for t in tickers} # Placeholder for actual betas
total_beta = sum(betas.values())
allocations = {t: betas[t] / total_beta * 100 for t in tickers}
return [Trade(t, int(allocations[t])) for t in tickers]
def trade28():
# Diversified Portfolio: Buy a mix of stocks with low correlations to each other
correlations = np.corrcoef([prices[t] for t in tickers])
chosen_tickers = []
while len(chosen_tickers) < 5 and len(tickers) > 0:
t = random.choice(tickers)
if all(correlations[tickers.index(t)][tickers.index(c)] < 0.5 for c in chosen_tickers):
chosen_tickers.append(t)
tickers.remove(t)
return [Trade(t, random.randrange(1, 3)) for t in chosen_tickers]
def trade29():
# Cointegration: Find a pair of stocks that are cointegrated and trade their spread
# This requires more complex analysis (e.g., using the Johansen test)
# For simplicity, we'll just pick a random pair and assume cointegration
i, j = random.sample(range(len(tickers)), 2)
spread = prices[tickers[i]][0] - prices[tickers[j]][0]
if spread > 0:
return [Trade(tickers[i], -1), Trade(tickers[j], 1)]
else:
return [Trade(tickers[i], 1), Trade(tickers[j], -1)]
def trade30():
# Basket Trading: Buy or sell a basket of stocks based on their correlation to a benchmark
# You'd need a benchmark ticker and its historical prices
benchmark = "SPY"
correlations = np.corrcoef([prices[t] for t in tickers + [benchmark]])[:-1, -1] # Correlate each stock with the benchmark
if np.mean(correlations) > 0.5:
return [Trade(t, 1) for t in tickers]
else:
return [Trade(t, -1) for t in tickers]
def trade31():
# Double Bottom: Buy when a stock forms a double bottom pattern
ticker = random.choice(tickers)
if prices[ticker][0] < prices[ticker][2] < prices[ticker][4] and prices[ticker][1] > prices[ticker][3]:
return [Trade(ticker, 1)]
else:
return []
def trade32():
# Double Top: Sell when a stock forms a double top pattern
ticker = random.choice(tickers)
if prices[ticker][0] > prices[ticker][2] > prices[ticker][4] and prices[ticker][1] < prices[ticker][3]:
return [Trade(ticker, -1)]
else:
return []
def trade33():
# Head and Shoulders: Sell when a stock forms a head and shoulders pattern
ticker = random.choice(tickers)
if prices[ticker][0] < prices[ticker][2] < prices[ticker][4] and prices[ticker][1] > prices[ticker][3] > prices[ticker][5]:
return [Trade(ticker, -1)]
else:
return []
def trade34
# Inverse Head and Shoulders: Buy when a stock forms an inverse head and shoulders pattern
ticker = random.choice(tickers)
if prices[ticker][0] > prices[ticker][2] > prices[ticker][4] and prices[ticker][1] < prices[ticker][3] < prices[ticker][5]:
return [Trade(ticker, 1)]
else:
return []
def trade35():
# Ascending Triangle: Buy when a stock forms an ascending triangle pattern
ticker = random.choice(tickers)
# Simplified logic: check for higher lows and flat highs
if prices[ticker][0] > prices[ticker][2] > prices[ticker][4] and prices[ticker][1] == prices[ticker][3] == prices[ticker][5]:
return [Trade(ticker, 1)]
else:
return []
def trade36():
# Descending Triangle: Sell when a stock forms a descending triangle pattern
ticker = random.choice(tickers)
# Simplified logic: check for lower highs and flat lows
if prices[ticker][0] < prices[ticker][2] < prices[ticker][4] and prices[ticker][1] == prices[ticker][3] == prices[ticker][5]:
return [Trade(ticker, -1)]
else:
return []
def trade37():
# Flag/Pennant: Buy or sell based on the direction of the flag/pennant pattern
ticker = random.choice(tickers)
# Simplified logic: check for a consolidation period after a strong move
if abs(prices[ticker][0] - np.mean(prices[ticker][1:5])) < 0.05 and abs(prices[ticker][5] - prices[ticker][6]) > 0.1:
# Buy if the prior move was up, sell if down
return [Trade(ticker, 1 if prices[ticker][5] > prices[ticker][6] else -1)]
else:
return []
def trade38():
# Gap Up: Buy when a stock opens significantly higher than its previous close
ticker = random.choice(tickers)
if prices[ticker][0] > prices[ticker][1] * 1.05: # 5% gap up
return [Trade(ticker, 1)]
else:
return []
def trade39():
# Gap Down: Sell when a stock opens significantly lower than its previous close
ticker = random.choice(tickers)
if prices[ticker][0] < prices[ticker][1] * 0.95: # 5% gap down
return [Trade(ticker, -1)]
else:
return []
def trade40():
# Rounding Bottom: Buy when a stock forms a rounding bottom pattern
ticker = random.choice(tickers)
# Simplified logic: check for a gradual price increase after a period of decline
if prices[ticker][0] > prices[ticker][2] > prices[ticker][4] and prices[ticker][1] < prices[ticker][3] < prices[ticker][5]:
return [Trade(ticker, 1)]
else:
return []
def trade41():
# Overbought/Oversold (RSI): Sell if RSI is above 70, buy if below 30
ticker = random.choice(tickers)
rsi = calculate_rsi(prices[ticker], 14) # Assuming you have an RSI calculation function
if rsi > 70:
return [Trade(ticker, -1)]
elif rsi < 30:
return [Trade(ticker, 1)]
else:
return []
def trade42():
# Bollinger Bands Breakout: Buy if price breaks above the upper band, sell if below lower
ticker = random.choice(tickers)
upper, middle, lower = calculate_bollinger_bands(prices[ticker], 20, 2) # Assuming you have a Bollinger Band calculation function
if prices[ticker][0] > upper:
return [Trade(ticker, 1)]
elif prices[ticker][0] < lower:
return [Trade(ticker, -1)]
else:
return []
def trade43():
# Channel Breakout: Buy or sell when price breaks out of a recent price channel
ticker = random.choice(tickers)
highs = [max(prices[ticker][i:i+5]) for i in range(len(prices[ticker]) - 5)]
lows = [min(prices[ticker][i:i+5]) for i in range(len(prices[ticker]) - 5)]
if prices[ticker][0] > highs[-1]:
return [Trade(ticker, 1)]
elif prices[ticker][0] < lows[-1]:
return [Trade(ticker, -1)]
else:
return []
def trade44():
# Trend Following: Buy if the 20-day moving average is rising, sell if falling
ticker = random.choice(tickers)
ma20_today = np.mean(prices[ticker][:20])
ma20_yesterday = np.mean(prices[ticker][1:21])
if ma20_today > ma20_yesterday:
return [Trade(ticker, 1)]
elif ma20_today < ma20_yesterday:
return [Trade(ticker, -1)]
else:
return []
def trade45():
# MACD Crossover: Buy when MACD line crosses above signal line, sell when below
ticker = random.choice(tickers)
macd_line, signal_line = calculate_macd(prices[ticker]) # Assuming you have a MACD calculation function
if macd_line[-1] > signal_line[-1] and macd_line[-2] <= signal_line[-2]:
return [Trade(ticker, 1)]
elif macd_line[-1] < signal_line[-1] and macd_line[-2] >= signal_line[-2]:
return [Trade(ticker, -1)]
else:
return []
def trade46():
# Stochastic Oscillator: Buy if %K crosses above %D in oversold zone, sell if opposite
ticker = random.choice(tickers)
k_line, d_line = calculate_stochastic(prices[ticker]) # Assuming you have a Stochastic calculation function
if k_line[-1] > d_line[-1] and k_line[-1] < 20:
return [Trade(ticker, 1)]
elif k_line[-1] < d_line[-1] and k_line[-1] > 80:
return [Trade(ticker, -1)]
else:
return []
def trade47():
# Volume Spike: Buy if today's volume is much higher than the average
# You'd need volume data for this strategy
ticker = random.choice(tickers)
avg_volume = np.mean(volumes[ticker][1:]) # Assuming you have 'volumes' data
if volumes[ticker][0] > avg_volume * 2:
return [Trade(ticker, 1)]
else:
return []
def trade48():
# Price Spike: Buy if today's price increase is much higher than average daily change
ticker = random.choice(tickers)
daily_changes = [(prices[ticker][i] - prices[ticker][i + 1]) / prices[ticker][i + 1] for i in range(len(prices[ticker]) - 1)]
avg_change = np.mean(daily_changes)
today_change = (prices[ticker][0] - prices[ticker][1]) / prices[ticker][1]
if today_change > avg_change * 2:
return [Trade(ticker, 1)]
else:
return []
def trade49():
# Mean Reversion (Long-term): Buy if the price is below its 200-day moving average
ticker = random.choice(tickers)
ma200 = np.mean(prices[ticker])
if prices[ticker][0] < ma200:
return [Trade(ticker, 1)]
else:
return []
def trade50():
# Trend Reversal (Parabolic SAR): Buy or sell based on the Parabolic SAR indicator
# Assuming you have a Parabolic SAR calculation function
ticker = random.choice(tickers)
sar = calculate_parabolic_sar(prices[ticker])
if prices[ticker][0] > sar[-1]:
return [Trade(ticker, 1)]
elif prices[ticker][0] < sar[-1]:
return [Trade(ticker, -1)]
else:
return []
def trade51():
# Market Outperformance: Buy stocks whose daily returns beat the market
total_market_values = [sum(prices[t][i] for t in tickers) for i in range(len(prices[tickers[0]]))]
market_return = (total_market_values[0] - total_market_values[1]) / total_market_values[1]
outperformers = [t for t in tickers if (prices[t][0] - prices[t][1]) / prices[t][1] > market_return]
if outperformers:
ticker = random.choice(outperformers)
return [Trade(ticker, 1)]
else:
return []
def trade52():
# Market Underperformance: Short stocks whose daily returns lag the market
total_market_values = [sum(prices[t][i] for t in tickers) for i in range(len(prices[tickers[0]]))]
market_return = (total_market_values[0] - total_market_values[1]) / total_market_values[1]
underperformers = [t for t in tickers if (prices[t][0] - prices[t][1]) / prices[t][1] < market_return]
if underperformers:
ticker = random.choice(underperformers)
return [Trade(ticker, -1)]
else:
return []
def trade53():
# Relative Strength to Market: Buy the stock with the highest relative strength to the market
total_market_values = [sum(prices[t][i] for t in tickers) for i in range(len(prices[tickers[0]]))]
market_return = (total_market_values[0] - total_market_values[1]) / total_market_values[1]
relative_strengths = {t: ((prices[t][0] - prices[t][1]) / prices[t][1]) - market_return for t in tickers}
ticker = max(relative_strengths, key=relative_strengths.get)
return [Trade(ticker, 1)]
def trade54():
# Relative Weakness to Market: Short the stock with the lowest relative strength to the market
total_market_values = [sum(prices[t][i] for t in tickers) for i in range(len(prices[tickers[0]]))]
market_return = (total_market_values[0] - total_market_values[1]) / total_market_values[1]
relative_strengths = {t: ((prices[t][0] - prices[t][1]) / prices[t][1]) - market_return for t in tickers}
ticker = min(relative_strengths, key=relative_strengths.get)
return [Trade(ticker, -1)]
def trade55():
# Sector vs. Market: Buy top stock from sector outperforming the market, short from underperforming
# Assuming you have sector data (e.g., 'sector_map' dict: ticker -> sector)
total_market_values = [sum(prices[t][i] for t in tickers) for i in range(len(prices[tickers[0]]))]
market_return = (total_market_values[0] - total_market_values[1]) / total_market_values[1]
sector_returns = {s: np.mean([(prices[t][0] - prices[t][1]) / prices[t][1] for t in tickers if sector_map[t] == s]) for s in set(sector_map.values())}
outperforming_sectors = [s for s in sector_returns if sector_returns[s] > market_return]
underperforming_sectors = [s for s in sector_returns if sector_returns[s] < market_return]
trades = []
if outperforming_sectors:
top_ticker = max([(t, prices[t][0]) for t in tickers if sector_map[t] == random.choice(outperforming_sectors)], key=lambda x: x[1])[0]
trades.append(Trade(top_ticker, 1))
if underperforming_sectors:
bottom_ticker = min([(t, prices[t][0]) for t in tickers if sector_map[t] == random.choice(underperforming_sectors)], key=lambda x: x[1])[0]
trades.append(Trade(bottom_ticker, -1))
return trades
def trade56():
# Market-Neutral Pairs: Long/short pairs of stocks with similar market betas
betas = {t: random.uniform(0.8, 1.2) for t in tickers} # Placeholder, calculate actual betas
pairs = [(t1, t2) for t1 in tickers for t2 in tickers if abs(betas[t1] - betas[t2]) < 0.1 and t1 != t2]
if pairs:
t1, t2 = random.choice(pairs)
return [Trade(t1, 1), Trade(t2, -1)]
else:
return []
def trade57():
# Beta Rotation: Buy high-beta stocks if the market is rising, low-beta if falling
total_market_values = [sum(prices[t][i] for t in tickers) for i in range(len(prices[tickers[0]]))]
market_return = (total_market_values[0] - total_market_values[1]) / total_market_values[1]
betas = {t: random.uniform(0.5, 2) for t in tickers} # Placeholder, calculate actual betas
if market_return > 0: # Market is rising
target_beta = 1.5 # Example target for high-beta
else:
target_beta = 0.8 # Example target for low-beta
closest_ticker = min(tickers, key=lambda t: abs(betas[t] - target_beta))
return [Trade(closest_ticker, 1 if market_return > 0 else -1)] # Buy if rising, short if falling
def trade58():
# Market Timing with Relative Strength: Buy strong stocks in up markets, sell in down markets
total_market_values = [sum(prices[t][i] for t in tickers) for i in range(len(prices[tickers[0]]))]
market_return = (total_market_values[0] - total_market_values[1]) / total_market_values[1]
relative_strengths = {t: ((prices[t][0] - prices[t][-1]) / prices[t][-1]) for t in tickers} # Calculate over a longer period (e.g., 20 days)
if market_return > 0:
strongest = max(relative_strengths, key=relative_strengths.get)
return [Trade(strongest, 1)]
else:
weakest = min(relative_strengths, key=relative_strengths.get)
return [Trade(weakest, -1)]
def trade59():
# Relative Value to Market: Buy stocks trading below their historical average relative to the market
# Requires historical data to calculate averages
total_market_values = [sum(prices[t][i] for t in tickers) for i in range(len(prices[tickers[0]]))]
relative_values = {t: prices[t][0] / total_market_values[0] for t in tickers} # Current relative value
historical_averages = {t: 0.05 for t in tickers} # Placeholder, calculate actual averages
undervalued = [t for t in tickers if relative_values[t] < historical_averages[t] * 0.95] # Allow some buffer
if undervalued:
ticker = random.choice(undervalued)
return [Trade(ticker, 1)]
else:
return []
def trade60():
# Market-Cap Weighted: Allocate trade amounts proportional to each stock's market cap relative to total market
total_market_value = sum(prices[t][0] for t in tickers)
market_caps = {t: prices[t][0] * 1000 for t in tickers} # Assuming 1000 shares outstanding for each stock
weights = {t: market_caps[t] / total_market_value for t in tickers}
total_trade_amount = 100 # Example
trades = [Trade(t, int(weights[t] * total_trade_amount)) for t in tickers]
return trades