This repository contains the code and data needed to reproduce the experiments of the paper:
R. Cañamares and P. Castells. On Target Item Sampling in Offline Recommender System Evaluation. 14th ACM Conference on Recommender Systems (RecSys 2020). Virtual Event, Brazil, September 2020.
The software produces the results displayed in the figures of the paper (1 to 5).
Information Retrieval Group at Universidad AutĂłnoma de Madrid
The repository contains the Java classes for reproducing the experiments reported in the paper. The software is organized in the following packages:
es.uam.ir.crossvalidation
: class for creating a 5-fold rating data partition for cross validation.es.uam.ir.datagenerator
: class for truncating ratings by a relevance threshold -- this is used by kNN algorithms in our experiments.es.uam.ir.filler
: class for filling in the missing coverage in recommendation rankings when an algorithm is not able to rank sufficient items for the metric cutoff.es.uam.ir.targetsampling
: top-level main classes for generating the figures of the paper and sampling different target set sizes.es.uam.ir.util
: additional utility classes for the rest of the program.
The software uses the RankSys library, and extends some of its classes. Our extensions are located in the following packages:
es.uam.ir.ranksys.metrics.basic
: extension of RankSys basic metrics to include the Coverage metric.es.uam.ir.ranksys.nn.user
: extension of RankSys implementations of kNN collaborative filtering, adding normalized user-based variants.es.uam.ir.ranksys.rec.fast.basic
: extension of RankSys implementations of non-personalized recommendation, adding average rating and random recommendation.es.uam.ir.ranksys.rec.runner.fast
: extension of RankSys to include target samplers.
-
Java JDK: 1.8 or above (the software was tested using the version 1.8.0_40).
-
Maven: tested with version 3.6.3.
Download all the files and unzip them into any root folder.
From the root folder run the command:
mvn compile assembly::single
In order to reproduce the results displayed in the figures of the paper, the datasets should be placed in the following locations:
- MovieLens 1M. Uncompress the dataset file and place
ratings.dat
in pathdatasets/ml1m/
. - Yahoo R3!. Uncompress the dataset file and place
ydata-ymusic-rating-study-v1_0-train.txt
andydata-ymusic-rating-study-v1_0-test.txt
in pathdatasets/yahoo/
.
Before producing any of the figures of the paper, first run the command:
java -cp .\target\TargetSampling-0.1-jar-with-dependencies.jar es.uam.ir.targetsampling.Initialize
This program generates the folders and files described in section Output files generated upon initialization below.
Once the previous command has finished, the results for the figures are generated with the following command:
java -cp .\target\TargetSampling-0.1-jar-with-dependencies.jar es.uam.ir.targetsampling.GenerateFigure figureNumber
Where figureNumber
is the number of the figure you want to generate. For instance, the following command generates figure 1.
java -cp .\target\TargetSampling-0.1-jar-with-dependencies.jar es.uam.ir.targetsampling.GenerateFigure 1
A file figure1.txt
is produced in the 'results/' folder when runnning the previous command. Similarly, figure2.txt
, figure3.txt
, etc., are produced by passing 2, 3, etc. as argument to the above command.
Note: running Figure 4 and Figure 5 generates additional auxiliary files, that you do not need to be concerned with unless you are interested in the intermediate results. See sections Additional output files generated when running Figure 4 and Additional output files generated when running Figure 5 for more details.
Warning: Figure 4 requires heavy computation and may take over one week to execute.
Note that given to the random sampling involved, the exact values slightly change from one execution to another:
-
figure1.txt
==================== Dataset: ml1m ==================== P@10 Recommender Full Test Average Rating 0.043632450331125824 0.6654437086092715 Normalized kNN (full) 0.20870529801324503 0.6430397350993378 Normalized kNN (test) 0.08596688741721856 0.6713145695364238 Popularity 0.19433774834437084 0.6247715231788079 Random 0.0101158940397351 0.550748344370861 iMF (full) 0.35446688741721855 0.6591854304635761 iMF (test) 0.1779072847682119 0.6846622516556291 kNN (full/test) 0.31014238410596023 0.6591854304635761
-
figure2.txt
==================== Dataset: yahoo ==================== nDCG@10 Recommender Full Unbiased Test Average Rating 0.001650734160221513 0.003829033307459144 0.5742325330205329 Normalized kNN (full) 0.11147538266721554 0.018741243171895478 0.5592266654113534 Normalized kNN (test) 0.003882970919506258 0.005036532205423697 0.5784354711675748 Popularity 0.09399462311473945 0.014028366168191336 0.5517415219579382 Random 0.004522436887264159 0.0025867995786283625 0.5339080440397328 iMF (full) 0.16771377618299926 0.0251217955870769 0.5785765223432282 iMF (test) 0.15340480662962952 0.02539973458928866 0.5834810525959093 kNN (full/test) 0.16122921629314352 0.024345937551992086 0.574813835832783 P@10 Recommender Full Unbiased Test Average Rating 7.703703703703704E-4 0.0015333333333333334 0.16937407407407407 Normalized kNN (full) 0.04318888888888889 0.005303703703703704 0.16796296296296295 Normalized kNN (test) 0.0017888888888888891 0.0016518518518518516 0.16967407407407406 Popularity 0.035033333333333326 0.0042703703703703706 0.16799629629629628 Random 0.0021222222222222224 9.407407407407409E-4 0.16673333333333334 iMF (full) 0.05665925925925926 0.006592592592592593 0.1703222222222222 iMF (test) 0.052974074074074076 0.006714814814814815 0.17070000000000002 kNN (full/test) 0.05455185185185185 0.006485185185185186 0.16973703703703708 Recall@10 Recommender Full Unbiased Test Average Rating 0.0031147841375079714 0.00860790711346267 0.6653173687495764 Normalized kNN (full) 0.18541561377791896 0.03399792768959435 0.6616775832736017 Normalized kNN (test) 0.007466027366265543 0.00951521164021164 0.6657179038022737 Popularity 0.14840804400335653 0.026248706643151088 0.6626026429117486 Random 0.007396483442576396 0.0049428277483833044 0.6583673440131952 iMF (full) 0.23595273981035292 0.04412942386831276 0.6666139854632609 iMF (test) 0.22593296451697437 0.04448390652557319 0.6672541822530319 kNN (full/test) 0.23017855552221628 0.04199854497354497 0.6657941512861026
-
figure3.txt
==================== Dataset: ml1m ==================== nDCG@10 Target size Average Rating Normalized kNN (full) Normalized kNN (test) Popularity Random iMF (full) iMF (test) kNN (full/test) 0 0.8474269175543897 0.8160138700628359 0.8560640445080618 0.7951016786057409 0.6938587830461577 0.8392894798788486 0.869845745259709 0.8402899757543999 1 0.8302687837271744 0.8033453158795792 0.844188068586804 0.7891364087628846 0.6589570611321536 0.8369285700866003 0.8656968700802136 0.8375852780862305 2 0.8143541633613524 0.7918560977120843 0.8331517909208177 0.7836486460751496 0.6290034817629173 0.834294875388436 0.8613803562039527 0.8349628501892955 5 0.7716195653249869 0.7606541618683871 0.8024665655458516 0.7671531680471257 0.5514022140874031 0.8265624491088086 0.8500156447880881 0.8272583396772968 10 0.7115228297491643 0.7231782361276808 0.7580025686825451 0.7421841077767024 0.451393507313454 0.8160834629568547 0.8325220433073339 0.8159683234042072 20 0.6224581091214122 0.6846044112170457 0.6878526962510374 0.7043594018471365 0.34219222114152026 0.8029565281647397 0.8021165420135411 0.7985826853895938 50 0.47540343032996824 0.6395027803761985 0.5634765275617488 0.6311444097925709 0.21141626058123855 0.7734366918184182 0.7333844000974973 0.7605659055545602 100 0.3601509831505314 0.6010048745345035 0.4573200753566578 0.561901280304331 0.13581288686070778 0.7403486896384539 0.6562736877339788 0.7180289289924343 200 0.25054601483033484 0.548047332735325 0.3542439027820496 0.48515268635867353 0.08181231155654889 0.6940097603546296 0.559012166024246 0.6609757666441688 500 0.13604002767006168 0.45002096900407346 0.22579365338449736 0.3798399964291014 0.03855122095950807 0.6090404043379937 0.40904141206097944 0.5639088475252959 1000 0.08304354038509996 0.3538668473399171 0.14695604536921053 0.30039476050747166 0.02008151422858673 0.5288886674282263 0.30113176785135976 0.4787546288169864 2000 0.03840049908595009 0.25147058646045484 0.08419500249292108 0.22797850770469935 0.010741474025524275 0.44031707177429336 0.20736314921530333 0.3914066084476547 3706 0.01583207677836752 0.17211749136937893 0.04461966601611872 0.1710266231206597 0.005681942151269359 0.3604854428871518 0.14314765027482065 0.31756171221269086 P@10 Target size Average Rating Normalized kNN (full) Normalized kNN (test) Popularity Random iMF (full) iMF (test) kNN (full/test) 0 0.6654437086092715 0.6430397350993378 0.6713145695364238 0.6247715231788079 0.550748344370861 0.6591854304635761 0.6846622516556291 0.6591854304635761 1 0.6566655629139073 0.6358576158940397 0.6649801324503312 0.6213112582781457 0.5324834437086092 0.6577218543046357 0.6820860927152317 0.6575066225165563 2 0.64808940397351 0.6284801324503311 0.6586920529801324 0.6179701986754967 0.5142350993377484 0.6560794701986754 0.679341059602649 0.6557980132450332 5 0.6211092715231789 0.6055728476821193 0.6395629139072848 0.6071854304635762 0.46288079470198673 0.6504105960264901 0.672566225165563 0.650476821192053 10 0.5804900662251655 0.5764602649006623 0.6096026490066225 0.5900960264900662 0.3879172185430464 0.6434470198675497 0.6610596026490067 0.6424271523178808 20 0.5168079470198675 0.546135761589404 0.5597980132450331 0.5632847682119205 0.30299668874172186 0.6340364238410595 0.6405894039735098 0.6295364238410596 50 0.4048112582781457 0.5104602649006622 0.4653112582781457 0.5088874172185431 0.1935364238410596 0.6126092715231788 0.5920397350993378 0.600907284768212 100 0.3136953642384106 0.4804602649006622 0.38298344370860926 0.45632450331125823 0.1260728476821192 0.5881059602649006 0.5358013245033113 0.5685298013245033 200 0.22138741721854305 0.44023509933774835 0.30250662251655636 0.3975894039735099 0.07653311258278146 0.5527913907284768 0.46229470198675493 0.5240662251655628 500 0.1246158940397351 0.3641092715231788 0.2003609271523179 0.31595695364238413 0.036599337748344375 0.4879801324503311 0.3438774834437086 0.4479105960264901 1000 0.08494370860927153 0.2889966887417218 0.13827483443708607 0.2529635761589404 0.01920198675496689 0.4247582781456954 0.25557947019867555 0.3796291390728477 2000 0.043632450331125824 0.20870529801324503 0.08596688741721856 0.19433774834437084 0.0101158940397351 0.35446688741721855 0.1779072847682119 0.31014238410596023 3706 0.020043046357615897 0.1461291390728477 0.04975496688741722 0.14565231788079472 0.005483443708609271 0.29138410596026487 0.12379470198675498 0.25129470198675496 Recall@10 Target size Average Rating Normalized kNN (full) Normalized kNN (test) Popularity Random iMF (full) iMF (test) kNN (full/test) 0 0.6266384740171216 0.6057585546067139 0.6298012679586169 0.6035505555604445 0.5668521678154991 0.6185188116404958 0.6351619213246099 0.6197158653371649 1 0.6190606492092695 0.5973632648437812 0.6241920501186813 0.5998816591365844 0.549759689150824 0.6167758841753055 0.6329032437880394 0.6178145242553763 2 0.6112286386245669 0.5881240171301719 0.6182942063116744 0.5962010222613425 0.5321458333086291 0.6145064959856493 0.6303289606144594 0.6158051205197526 5 0.5845558785226554 0.5539962693460395 0.5993711007114246 0.5830231449347161 0.47340461756487323 0.606242841954809 0.6226741659872465 0.6089089520997709 10 0.5368418923697125 0.4984121177058955 0.5654675439014706 0.5597819358803439 0.3656306617655322 0.5924069295942282 0.609127067184265 0.5972596006153738 20 0.45767836248098126 0.4446157559996761 0.5023685556747448 0.5206562496423088 0.25150789952604147 0.5784918091268105 0.5847771947730389 0.5788841670892299 50 0.32941978616735984 0.39578894620579025 0.3871322846458475 0.4457150123487965 0.13681051410331022 0.5496870351740643 0.5279607120685339 0.5406373764453507 100 0.24024514664762225 0.3680536956903485 0.2983028557432813 0.37924423629567416 0.08036444477318788 0.5183385568717808 0.4654884472713551 0.501493430475634 200 0.16194415792192027 0.3408351376470171 0.22245163861964484 0.31277379497866786 0.04412588158296539 0.47680325288307046 0.3875097608967993 0.45112966440795194 500 0.08364040874416587 0.2953741112511602 0.13781373747250264 0.23056094431144197 0.01910051523761007 0.4046683682547935 0.2735007759915167 0.37001109237643587 1000 0.054985689759310674 0.24662913238304768 0.09023117951939769 0.17426742789745023 0.010160200286924322 0.3407678286600797 0.1956516651659124 0.3031272314394585 2000 0.02669183114174914 0.18623823276557688 0.05097023817536843 0.12428011914972496 0.005318348557865324 0.2748393593348874 0.13057869461907687 0.23932348941317536 3706 0.011581141610150123 0.13213431866161526 0.02671609637234366 0.08607540702474145 0.002663733141711325 0.21908105494838245 0.08812157048829075 0.1877777494051907 ==================== Dataset: yahoo ==================== nDCG@10 Target size Average Rating Normalized kNN (full) Normalized kNN (test) Popularity Random iMF (full) iMF (test) kNN (full/test) 0 0.5742325330205329 0.5592266654113534 0.5784354711675748 0.5517415219579382 0.5339080440397328 0.5785765223432282 0.5834810525959093 0.574813835832783 1 0.5365223395523299 0.533381398067417 0.5577103381674886 0.5381587679775924 0.48721273606274973 0.5716202049576984 0.5769819915441677 0.5667436815586787 2 0.5065004594548841 0.5149382164952903 0.5394561986193269 0.5266287395967524 0.4529588409839313 0.5653724240496371 0.5708560671931644 0.5597318536225979 5 0.4371013560817773 0.47191819528621065 0.49231898223084036 0.499164891159612 0.37532121276763053 0.5488585259348573 0.5548844848918116 0.5421542211161171 10 0.3500652501852782 0.40596247333930585 0.4295489171453067 0.45744496136496826 0.26850993789554695 0.5240732451847766 0.5308669996799528 0.5164075500022591 20 0.23626883167014473 0.34169575627496124 0.34277236121287363 0.4038523669335924 0.16056518193316432 0.4894957076849617 0.49577377325726796 0.47810484108840284 50 0.10363088355433618 0.28050225663591427 0.19858525994405068 0.3242102016880833 0.07432212593860779 0.4243534579013374 0.4284027642686272 0.4152514351898467 100 0.045167330624334055 0.2469195395197883 0.10146854731738539 0.2632562461338456 0.03941996050450971 0.3684665611348721 0.36768623142348034 0.36009210640342787 200 0.01746669288334444 0.2123651566745623 0.040498766705399335 0.20742276541880372 0.020081898952859906 0.305358855298148 0.2981245050276884 0.29798496834545424 500 0.006155715486787669 0.1593375290726513 0.009986524634572787 0.13604938091945107 0.008362299048176161 0.22394473930175346 0.2107313482931291 0.21682422980321184 1000 0.001650734160221513 0.11147538266721554 0.003882970919506258 0.09399462311473945 0.004522436887264159 0.16771377618299926 0.15340480662962952 0.16122921629314352 P@10 Target size Average Rating Normalized kNN (full) Normalized kNN (test) Popularity Random iMF (full) iMF (test) kNN (full/test) 0 0.16937407407407407 0.16796296296296295 0.16967407407407406 0.16799629629629628 0.16673333333333334 0.1703222222222222 0.17070000000000002 0.16973703703703708 1 0.1680222222222222 0.16632592592592593 0.1686 0.16688148148148146 0.1648037037037037 0.16973333333333335 0.1701814814814815 0.16904444444444447 2 0.16644074074074072 0.16431851851851853 0.16742962962962965 0.16547037037037038 0.16180000000000003 0.1690888888888889 0.1694962962962963 0.16824074074074075 5 0.15975925925925927 0.15539629629629628 0.16330740740740743 0.1603814814814815 0.1494925925925926 0.16661851851851855 0.16723333333333334 0.16547407407407408 10 0.1392851851851852 0.12951851851851853 0.15331851851851852 0.1480185185185185 0.11185185185185184 0.16061851851851852 0.16213703703703702 0.15826296296296297 20 0.10261851851851853 0.10263703703703704 0.13268518518518518 0.13061851851851852 0.0685111111111111 0.15132592592592592 0.15287777777777778 0.14733703703703704 50 0.049044444444444446 0.08027037037037038 0.08568148148148148 0.10572962962962962 0.032596296296296304 0.13359259259259262 0.13494074074074072 0.1295962962962963 100 0.022222222222222223 0.07117407407407407 0.046848148148148146 0.08692222222222222 0.01767037037037037 0.11665555555555555 0.11746296296296296 0.11368888888888888 200 0.00864814814814815 0.06534444444444445 0.01905185185185185 0.07062592592592594 0.009274074074074075 0.09830000000000001 0.09737777777777779 0.09587407407407408 500 0.0033148148148148147 0.05666296296296297 0.004670370370370372 0.04869629629629629 0.003755555555555556 0.0738111111111111 0.07089259259259259 0.07154444444444444 1000 7.703703703703704E-4 0.04318888888888889 0.0017888888888888891 0.035033333333333326 0.0021222222222222224 0.05665925925925926 0.052974074074074076 0.05455185185185185 Recall@10 Target size Average Rating Normalized kNN (full) Normalized kNN (test) Popularity Random iMF (full) iMF (test) kNN (full/test) 0 0.6653173687495764 0.6616775832736017 0.6657179038022737 0.6626026429117486 0.6583673440131952 0.6666139854632609 0.6672541822530319 0.6657941512861026 1 0.6631092046841357 0.6588448328317067 0.6640906629913332 0.6605526690270815 0.655436903484848 0.6656026460328872 0.6664370633481147 0.6645789655459169 2 0.6602973462466161 0.6541095939288305 0.6622634263737319 0.6578997164621916 0.6484848741989341 0.6644937984478888 0.6654770214582334 0.66303331714897 5 0.6466695002027228 0.6318635373800514 0.6539510625392687 0.6458774549530795 0.617485146154882 0.6587197119216528 0.6602361050535368 0.6568922213182439 10 0.5785399760930137 0.533267499970085 0.6262934932577813 0.6042726687593085 0.4705891360950785 0.6388265645332727 0.6454945269450066 0.6337854373718891 20 0.4265127437547829 0.4138212335994947 0.55666648036744 0.5369265686755089 0.27574855569904616 0.6064113377085293 0.6134390405160806 0.5928935712744722 50 0.1984615481016997 0.3204132750654596 0.3728994758186742 0.43784530873052957 0.1260559893153989 0.5411678646381539 0.5491234099699354 0.5273387193669155 100 0.08591957828562953 0.28480764669516406 0.20444164090040146 0.36229415644457363 0.06479477268979329 0.4767716402635365 0.48226907704877575 0.46756283471278903 200 0.0316897656011111 0.2653354237299926 0.08333364480997613 0.29631237043439934 0.0334766907707463 0.4059476250859837 0.40584406698029785 0.3988081384502701 500 0.01257530953079793 0.23738827484271438 0.019557891010077745 0.20409188871826042 0.013483647673339084 0.30696740890273067 0.3012037117942265 0.30086250498426736 1000 0.0031147841375079714 0.18541561377791896 0.007466027366265543 0.14840804400335653 0.007396483442576396 0.23595273981035292 0.22593296451697437 0.23017855552221628
-
figure4.txt
==================== Dataset: ml1m ==================== nDCG@10 Target size Expected intersection ratio in top n Ratio of ties Ratio of ties at zero Sum of p-values 0 0.574528681 0.185368969 0.008739357 71.28555491 1 0.558366078 0.138043992 0.008746452 77.55132457 2 0.540983483 0.118148061 0.008751183 79.15633664 5 0.480445039 0.091112819 0.008874172 67.26120313 10 0.372798668 0.071394276 0.009263245 51.30954202 20 0.25623712 0.056795175 0.010980369 35.51160652 50 0.138890495 0.046014664 0.017030511 21.13541875 100 0.08103185 0.047068354 0.026712394 41.60353423 200 0.044910018 0.056396641 0.042233917 22.69381847 500 0.019445149 0.08657403 0.076604778 27.7242271 1000 0.010035044 0.124270341 0.116047777 22.77760853 2000 0.005105328 0.187986045 0.180604305 29.10533677 3706 0.002804388 0.269395695 0.262850047 16.96667005 P@10 Target size Expected intersection ratio in top n Ratio of ties Ratio of ties at zero Sum of p-values 0 0.574528681 0.555457663 0.008739357 64.97746512 1 0.558366078 0.528716887 0.008746452 88.37805274 2 0.540983483 0.504722091 0.008751183 88.05789623 5 0.480445039 0.431420293 0.008874172 74.06320958 10 0.372798668 0.344123699 0.009263245 41.19384225 20 0.25623712 0.281005203 0.010980369 41.55735873 50 0.138890495 0.22593543 0.017030511 28.50290115 100 0.08103185 0.202827578 0.026712394 30.55372366 200 0.044910018 0.193336093 0.042233917 37.70691166 500 0.019445149 0.203304163 0.076604778 22.90575647 1000 0.010035044 0.232816935 0.116047777 15.35931483 2000 0.005105328 0.281673368 0.180604305 21.74596902 3706 0.002804388 0.34489948 0.262850047 36.40395814 Recall@10 Target size Expected intersection ratio in top n Ratio of ties Ratio of ties at zero Sum of p-values 0 0.574528681 0.555457663 0.008739357 91.89411298 1 0.558366078 0.528716887 0.008746452 93.25529831 2 0.540983483 0.504722091 0.008751183 112.1142271 5 0.480445039 0.431420293 0.008874172 89.79130929 10 0.372798668 0.344123699 0.009263245 60.32143589 20 0.25623712 0.281005203 0.010980369 48.01642512 50 0.138890495 0.22593543 0.017030511 35.52516904 100 0.08103185 0.202827578 0.026712394 29.37267018 200 0.044910018 0.193336093 0.042233917 29.48777395 500 0.019445149 0.203304163 0.076604778 25.76555899 1000 0.010035044 0.232816935 0.116047777 33.57200604 2000 0.005105328 0.281673368 0.180604305 24.41926729 3706 0.002804388 0.34489948 0.262850047 37.65538846 ==================== Dataset: yahoo ==================== nDCG@10 Target size Correlation with unbiased evaluation Expected intersection ratio in top n Ratio of ties Ratio of ties at zero Sum of p-values 0 0.642857143 0.978749634 0.634497354 0.322525132 175.8397479 1 0.714285714 0.973822498 0.528431217 0.322547619 97.78268079 2 0.785714286 0.967250713 0.486854497 0.322649471 78.56412382 5 0.857142857 0.929165893 0.43537037 0.323156085 59.6964845 10 0.857142857 0.725526751 0.407256614 0.325641534 34.77367448 20 0.857142857 0.419060186 0.400887566 0.339746032 37.00487599 50 0.928571429 0.186671985 0.426284392 0.383628307 30.74563587 100 0.857142857 0.097347174 0.470984127 0.437825397 46.56217236 200 0.857142857 0.049778853 0.523746032 0.499484127 34.24317516 500 0.785714286 0.020199182 0.599140212 0.583867725 41.52063557 1000 0.714285714 0.010199519 0.664207672 0.654013228 56.5984932 P@10 Target size Correlation with unbiased evaluation Expected intersection ratio in top n Ratio of ties Ratio of ties at zero Sum of p-values 0 0.642857143 0.978749634 0.973275132 0.322525132 364.5719429 1 0.642857143 0.973822498 0.96564418 0.322547619 187.0699151 2 0.642857143 0.967250713 0.956312169 0.322649471 134.4884984 5 0.714285714 0.929165893 0.91365873 0.323156085 103.0997591 10 0.714285714 0.725526751 0.778624339 0.325641534 52.75302968 20 0.785714286 0.419060186 0.668384921 0.339746032 38.82973256 50 0.857142857 0.186671985 0.604529101 0.383628307 44.28920657 100 0.928571429 0.097347174 0.601115079 0.437825397 29.29375845 200 0.785714286 0.049778853 0.626005291 0.499484127 50.15748309 500 0.785714286 0.020199182 0.678030423 0.583867725 34.39498621 1000 0.714285714 0.010199519 0.724080688 0.654013228 39.97958074 Recall@10 Target size Correlation with unbiased evaluation Expected intersection ratio in top n Ratio of ties Ratio of ties at zero Sum of p-values 0 0.642857143 0.978749634 0.973275132 0.322525132 336.1208641 1 0.642857143 0.973822498 0.96564418 0.322547619 225.2082675 2 0.642857143 0.967250713 0.956312169 0.322649471 181.0026774 5 0.642857143 0.929165893 0.91365873 0.323156085 120.1367147 10 0.714285714 0.725526751 0.778624339 0.325641534 66.76248884 20 0.714285714 0.419060186 0.668384921 0.339746032 56.77973938 50 0.857142857 0.186671985 0.604529101 0.383628307 45.97959657 100 0.928571429 0.097347174 0.601115079 0.437825397 38.2936459 200 0.785714286 0.049778853 0.626005291 0.499484127 42.59841558 500 0.857142857 0.020199182 0.678030423 0.583867725 42.87905009 1000 0.785714286 0.010199519 0.724080688 0.654013228 51.86857291
-
figure5.txt
==================== Dataset: ml1m-nofill ==================== Coverage@10 Target size Average Rating Normalized kNN (full) Normalized kNN (test) Popularity Random iMF (full) iMF (test) kNN (full/test) 0 0.8865860927152319 0.6780331125827814 0.8858245033112583 0.8865860927152319 0.8866688741721853 0.8866688741721853 0.8866688741721853 0.876913907284768 1 0.9137649006622517 0.6785728476821192 0.907360927152318 0.9137649006622517 0.9140463576158939 0.9140463576158939 0.9140463576158939 0.8887847682119204 2 0.937566225165563 0.6792218543046357 0.9268841059602648 0.937566225165563 0.9379403973509934 0.9379403973509934 0.9379403973509934 0.8997019867549669 5 0.9852549668874173 0.6809039735099337 0.9702019867549669 0.9852549668874173 0.9856688741721854 0.9856688741721854 0.9856688741721854 0.9285066225165564 10 0.9999801324503311 0.6835364238410596 0.9972814569536425 0.9999801324503311 0.9999900662251655 0.9999900662251655 0.9999900662251655 0.9620331125827815 20 1.0 0.6896357615894039 0.9999933774834437 1.0 1.0 1.0 1.0 0.9908079470198675 50 1.0 0.7047350993377484 1.0 1.0 1.0 1.0 1.0 0.9998841059602649 100 1.0 0.7279403973509934 1.0 1.0 1.0 1.0 1.0 1.0 200 1.0 0.7668211920529802 1.0 1.0 1.0 1.0 1.0 1.0 500 1.0 0.8481390728476821 1.0 1.0 1.0 1.0 1.0 1.0 1000 1.0 0.9180761589403973 1.0 1.0 1.0 1.0 1.0 1.0 2000 1.0 0.9737384105960265 1.0 1.0 1.0 1.0 1.0 1.0 3706 1.0 0.9958013245033112 1.0 1.0 1.0 1.0 1.0 1.0 ==================== Dataset: yahoo-nofill ==================== Coverage@10 Target size Average Rating Normalized kNN (full) Normalized kNN (test) Popularity Random iMF (full) iMF (test) kNN (full/test) 0 0.4307148148148148 0.13495925925925928 0.41503703703703704 0.4307148148148148 0.4307148148148148 0.4307148148148148 0.4307148148148148 0.4140407407407408 1 0.5203777777777778 0.13655185185185187 0.47208518518518516 0.5203777777777778 0.5203777777777778 0.5203777777777778 0.5203777777777778 0.47368148148148154 2 0.6074074074074074 0.13802592592592594 0.5273888888888889 0.6074074074074074 0.6074074074074074 0.6074074074074074 0.6074074074074074 0.5324037037037037 5 0.8395518518518518 0.14304074074074075 0.6844555555555555 0.8395518518518518 0.8395518518518518 0.8395518518518518 0.8395518518518518 0.6968925925925926 10 0.9995259259259258 0.15131111111111112 0.8852592592592593 0.9995259259259258 0.9995259259259258 0.9995259259259258 0.9995259259259258 0.9031555555555556 20 1.0 0.16712222222222223 0.9960629629629629 1.0 1.0 1.0 1.0 0.9981259259259259 50 1.0 0.21698518518518517 1.0 1.0 1.0 1.0 1.0 1.0 100 1.0 0.2950074074074074 1.0 1.0 1.0 1.0 1.0 1.0 200 1.0 0.44641481481481476 1.0 1.0 1.0 1.0 1.0 1.0 500 1.0 0.7909444444444444 1.0 1.0 1.0 1.0 1.0 1.0 1000 1.0 0.9804592592592594 1.0 1.0 1.0 1.0 1.0 1.0
The software takes configuration parameters defined in the following files:
conf/ml1m-biased.properties
: configuration for running the experiments using the ratings of the MovieLens 1M dataset. The parameters of the algorithms along with other properties are set here.conf/yahoo-biased.properties
: configuration for running the experiments using the biased ratings of the Yahoo R3 dataset. The parameters of the algorithms along with other properties are set here.conf/yahoo-unbiased.properties
: configuration for running the experiments using the unbiased ratings of the Yahoo R3 dataset. The parameters of the algorithms along with other properties are set here.
In case you are interested in the detail and intermediate results that are elaborated and aggregated into the figure files, we provide here a description of the corresponding files containing such detail.
The following files are generated in the folder results/biased.
For Yahoo! R3:
-
yahoo-target-sampling.txt
: Contains the performance (in terms of different metrics) achieved by each algorithm for each target size and each fold. The format of the file is :fold\ttarget size\trecommender system\tCoverage@10\tnDCG@10\tP@10\tRecall@10
. -
yahoo-ties.txt
: For each pair of algorithms, the file contains the ratio of users for which the two algorithms obtain the same metric value (in terms of different metrics and target size). The format of the file is :target size\trecommender system 1\trecommender system 2\tCoverage@10\tnDCG@10\tP@10\tRecall@10
. -
yahoo-tiesAtZero.txt
: For each pair of algorithms, the file contains the ratio of users for which the two algorithms obtain a metric value of 0 (in terms of different metrics and target size). The format of the file is :target size\trecommender system 1\trecommender system 2\tCoverage@10\tnDCG@10\tP@10\tRecall@10
. -
yahoo-pvalues.txt
: For each pair of algorithms, contains the t-test p-value for a metric comparison of both algorithms (in terms of different metrics and target size). The format of the file is :target size\trecommender system 1\trecommender system 2\tCoverage@10\tnDCG@10\tP@10\tRecall@10
. -
yahoo-expected-intersection-ratio.txt
: Contains the expected intersection ratio for each target size and each fold. The format of the file is :fold\ttarget size\texpected intersection ratio
.
For MovieLens 1M, equivalent output files to the previous ones for Yahoo! R3.
ml1m-target-sampling.txt
ml1m-ties.txt
ml1m-tiesAtZero.txt
ml1m-pvalues.txt
ml1m-expected-intersection-ratio.txt
The following files are generated in the folder results/unbiased. These files are equivalent to the ones generated in results/biased but using the unbiased test from yahoo, and without considering different target sizes. Only one target size (full = 1000) appears in the files.
yahoo-target-selection.txt
yahoo-ties.txt
yahoo-tiesAtZero.txt
yahoo-pvalues.txt
yahoo-expected-intersection-ratio.txt
In case you are interested in the detail and intermediate results that are elaborated and aggregated into the figure files, we provide here a description of the corresponding files containing such detail.
The curve sum of p-values
of Figure 4 requires additional files to be generated. They are equivalent to the ones generated upon initialization but using more parameter configurations for kNN and iMF.
These files are generated when running the command to generate Figure 4 (see section Execution).
For Yahoo! R3:
yahoo-allrecs-target-sampling.txt
yahoo-allrecs-ties.txt
yahoo-allrecs-tiesAtZero.txt
yahoo-allrecs-pvalues.txt
yahoo-allrecs-expected-intersection-ratio.txt
For MovieLens 1M:
ml1m-allrecs-target-sampling.txt
ml1m-allrecs-ties.txt
ml1m-allrecs-tiesAtZero.txt
ml1m-allrecs-pvalues.txt
ml1m-allrecs-expected-intersection-ratio.txt
In case you are interested in the detail and intermediate results that are elaborated and aggregated into the figure files, we provide here a description of the corresponding files containing such detail.
Figure 5 requires running algorithms without filling in the rankings when they are short of coverage. Therefore, running the command to generate Figure 5 (see section Execution) generates equivalent files to the ones generated upon initialization but without randomly filling in the rankings.
For Yahoo! R3:
yahoo-nofill-target-sampling.txt
yahoo-nofill-ties.txt
yahoo-nofill-tiesAtZero.txt
yahoo-nofill-pvalues.txt
yahoo-nofill-expected-intersection-ratio.txt
For MovieLens 1M:
ml1m-nofill-target-sampling.txt
ml1m-nofill-ties.txt
ml1m-nofill-tiesAtZero.txt
ml1m-nofill-pvalues.txt
ml1m-nofill-expected-intersection-ratio.txt