-
-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathrategammainvar.h
201 lines (168 loc) · 6.08 KB
/
rategammainvar.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
/***************************************************************************
* Copyright (C) 2009 by BUI Quang Minh *
* minh.bui@univie.ac.at *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifndef RATEGAMMAINVAR_H
#define RATEGAMMAINVAR_H
#include "rateinvar.h"
#include "rategamma.h"
/**
class for I+G rate heterogeneity
@author BUI Quang Minh <minh.bui@univie.ac.at>
*/
class RateGammaInvar : public RateInvar, public RateGamma
{
public:
/**
constructor
@param ncat number of rate categories
@param tree associated phylogenetic tree
@param testAlpha turn on option for doing random restart optimization of alpha and p_invar
*/
RateGammaInvar(int ncat, double shape, bool median, double p_invar_sites, string optimize_alg, PhyloTree *tree, bool testParamDone);
/**
* check whether +I+G is used
*/
virtual bool isGammai() const {
return true;
}
/**
start structure for checkpointing
*/
virtual void startCheckpoint();
/**
save object into the checkpoint
*/
virtual void saveCheckpoint();
/**
restore object from the checkpoint
*/
virtual void restoreCheckpoint();
/**
get the proportion of sites under a specified category.
@param category category ID from 0 to #category-1
@return the proportion of the specified category
*/
virtual double getProp(int category) { return (1.0-p_invar)/ncategory; }
/**
get the rate of a specified category. Default returns 1.0 since it is homogeneous model
@param category category ID from 0 to #category-1
@return the rate of the specified category
*/
virtual double getRate(int category) { return RateGamma::getRate(category); }
/**
set the proportion of invariable sites. Default: do nothing
@param pinv the proportion of invariable sites
*/
virtual void setPInvar(double pInvar);
/**
* used to normal branch lengths if mean rate is not equal to 1 (e.g. FreeRate model)
* @return mean rate, default = 1
*/
virtual double meanRates();
/**
* rescale rates s.t. mean rate is equal to 1, useful for FreeRate model
* @return rescaling factor
*/
virtual double rescaleRates();
/**
* @return model name with parameters in form of e.g. GTR{a,b,c,d,e,f}
*/
virtual string getNameParams();
/**
override function from Optimization class, used by the minimizeOneDimen() to optimize
p_invar or gamma shape parameter.
@param value value of p_invar (if cur_optimize == 1) or gamma shape (if cur_optimize == 0).
*/
virtual double computeFunction(double value);
/**
* setup the bounds for joint optimization with BFGS
*/
virtual void setBounds(double *lower_bound, double *upper_bound, bool *bound_check);
/**
optimize parameters
@return the best likelihood
*/
virtual double optimizeParameters(double gradient_epsilon);
/**
optimize rate parameters using EM algorithm
@return log-likelihood of optimized parameters
*/
double optimizeWithEM();
/**
return the number of dimensions
*/
virtual int getNDim() { return RateInvar::getNDim() + RateGamma::getNDim(); }
/**
the target function which needs to be optimized
@param x the input vector x
@return the function value at x
*/
virtual double targetFunk(double x[]);
/**
write information
@param out output stream
*/
virtual void writeInfo(ostream &out);
/**
write parameters, used with modeltest
@param out output stream
*/
virtual void writeParameters(ostream &out);
/** TRUE to jointly optimize gamma shape and p_invar using BFGS, default: FALSE */
//bool joint_optimize;
virtual void setNCategory(int ncat);
/**
Compute site-specific rates. Override this for Gamma model
@param pattern_rates (OUT) pattern rates. Resizing if necesary
@return total number of categories
*/
virtual int computePatternRates(DoubleVector &pattern_rates, IntVector &pattern_cat);
protected:
/**
this function is served for the multi-dimension optimization. It should pack the model parameters
into a vector that is index from 1 (NOTE: not from 0)
@param variables (OUT) vector of variables, indexed from 1
*/
virtual void setVariables(double *variables);
/**
this function is served for the multi-dimension optimization. It should assign the model parameters
from a vector of variables that is index from 1 (NOTE: not from 0)
@param variables vector of variables, indexed from 1
@return TRUE if parameters are changed, FALSE otherwise (2015-10-20)
*/
virtual bool getVariables(double *variables);
private:
/**
* Determine which algorithm is used to optimized p_inv and alpha
*/
string optimize_alg;
/**
current parameter to optimize. 0 if gamma shape or 1 if p_invar.
*/
int cur_optimize;
/**
* Optimize p_inv and gamma shape using the EM algorithm
*/
double optimizeWithEM(double gradient_epsilon);
/**
* Start with different initial values of p_inv
*/
double randomRestartOptimization(double gradient_epsilon);
};
#endif