forked from guneykan/gcn_text_categorization
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbuild_adjacency.py
190 lines (151 loc) · 8.71 KB
/
build_adjacency.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import pickle
from collections import Counter
from math import log
from typing import List, Dict, Tuple
import numpy as np
from scipy.sparse import csr_matrix
from scipy.spatial.distance import cosine
from common import check_data_set, flatten_nested_iterables
from preprocessors.configs import PreProcessingConfigs
from utils.file_ops import create_dir, check_paths
def extract_word_to_doc_ids(docs_of_words: List[List[str]]) -> Dict[str, List[int]]:
"""Extracted the document ids where unique words appeared."""
word_to_doc_ids = {}
for doc_id, words in enumerate(docs_of_words):
appeared_words = set()
for word in words:
if word not in appeared_words:
if word in word_to_doc_ids:
word_to_doc_ids[word].append(doc_id)
else:
word_to_doc_ids[word] = [doc_id]
appeared_words.add(word)
return word_to_doc_ids
def extract_word_to_doc_counts(word_to_doc_ids: Dict[str, List[int]]) -> Dict[str, int]:
return {word: len(doc_ids) for word, doc_ids in word_to_doc_ids.items()}
def extract_windows(docs_of_words: List[List[str]], window_size: int) -> List[List[str]]:
"""Word co-occurrence with context windows"""
windows = []
for doc_words in docs_of_words:
doc_len = len(doc_words)
if doc_len <= window_size:
windows.append(doc_words)
else:
for j in range(doc_len - window_size + 1):
window = doc_words[j: j + window_size]
windows.append(window)
return windows
def extract_word_counts_in_windows(windows_of_words: List[List[str]]) -> Dict[str, int]:
"""Find the total count of unique words in each window, each window is bag-of-words"""
bags_of_words = map(set, windows_of_words)
return Counter(flatten_nested_iterables(bags_of_words))
def extract_word_ids_pair_to_counts(windows_of_words: List[List[str]], word_to_id: Dict[str, int]) -> Dict[str, int]:
word_ids_pair_to_counts = Counter()
for window in windows_of_words:
for i in range(1, len(window)):
word_id_i = word_to_id[window[i]]
for j in range(i):
word_id_j = word_to_id[window[j]]
if word_id_i != word_id_j:
word_ids_pair_to_counts.update(['{},{}'.format(word_id_i, word_id_j),
'{},{}'.format(word_id_j, word_id_i)])
return dict(word_ids_pair_to_counts)
def extract_pmi_word_weights(windows_of_words: List[List[str]], word_to_id: Dict[str, int], vocab: List[str],
train_size: int) -> Tuple[List[int], List[int], List[float]]:
"""Calculate PMI as weights"""
weight_rows = [] # type: List[int]
weight_cols = [] # type: List[int]
pmi_weights = [] # type: List[float]
num_windows = len(windows_of_words)
word_counts_in_windows = extract_word_counts_in_windows(windows_of_words=windows_of_words)
word_ids_pair_to_counts = extract_word_ids_pair_to_counts(windows_of_words, word_to_id)
for word_id_pair, count in word_ids_pair_to_counts.items():
word_ids_in_str = word_id_pair.split(',')
word_id_i, word_id_j = int(word_ids_in_str[0]), int(word_ids_in_str[1])
word_i, word_j = vocab[word_id_i], vocab[word_id_j]
word_freq_i, word_freq_j = word_counts_in_windows[word_i], word_counts_in_windows[word_j]
pmi_score = log((1.0 * count / num_windows) / (1.0 * word_freq_i * word_freq_j / (num_windows * num_windows)))
if pmi_score > 0.0:
weight_rows.append(train_size + word_id_i)
weight_cols.append(train_size + word_id_j)
pmi_weights.append(pmi_score)
return weight_rows, weight_cols, pmi_weights
def extract_cosine_similarity_word_weights(vocab: List[str], train_size: int,
word_vec_path: str) -> Tuple[List[int], List[int], List[float]]:
"""Calculate Cosine Similarity of Word Vectors as weights"""
word_vectors = pickle.load(file=open(word_vec_path, 'rb')) # type: Dict[str,List[float]]
weight_rows = [] # type: List[int]
weight_cols = [] # type: List[int]
cos_sim_weights = [] # type: List[float]
for i, word_i in enumerate(vocab):
for j, word_j in enumerate(vocab):
if word_i in word_vectors and word_j in word_vectors:
vector_i = np.array(word_vectors[word_i])
vector_j = np.array(word_vectors[word_j])
similarity = 1.0 - cosine(vector_i, vector_j)
if similarity > 0.9:
print(word_i, word_j, similarity)
weight_rows.append(train_size + i)
weight_cols.append(train_size + j)
cos_sim_weights.append(similarity)
return weight_rows, weight_cols, cos_sim_weights
def extract_doc_word_ids_pair_to_counts(docs_of_words: List[List[str]], word_to_id: Dict[str, int]) -> Dict[str, int]:
doc_word_freq = Counter()
for doc_id, doc_words in enumerate(docs_of_words):
for word in doc_words:
word_id = word_to_id[word]
doc_word_freq.update([str(doc_id) + ',' + str(word_id)])
return dict(doc_word_freq)
def extract_tf_idf_doc_word_weights(
adj_rows: List[int], adj_cols: List[int], adj_weights: List[float], vocab: List[str], train_size: int,
docs_of_words: List[List[str]], word_to_id: Dict[str, int]) -> Tuple[List[int], List[int], List[float]]:
"""Extract Doc-Word weights with TF-IDF"""
doc_word_ids_pair_to_counts = extract_doc_word_ids_pair_to_counts(docs_of_words, word_to_id)
word_to_doc_ids = extract_word_to_doc_ids(docs_of_words=docs_of_words)
word_to_doc_counts = extract_word_to_doc_counts(word_to_doc_ids=word_to_doc_ids)
vocab_len = len(vocab)
num_docs = len(docs_of_words)
for doc_id, doc_words in enumerate(docs_of_words):
doc_word_set = set()
for word in doc_words:
if word not in doc_word_set:
word_id = word_to_id[word]
word_ids_pair_count = doc_word_ids_pair_to_counts[str(doc_id) + ',' + str(word_id)]
adj_rows.append(doc_id if doc_id < train_size else doc_id + vocab_len)
adj_cols.append(train_size + word_id)
doc_word_idf = log(1.0 * num_docs / word_to_doc_counts[vocab[word_id]])
adj_weights.append(word_ids_pair_count * doc_word_idf)
doc_word_set.add(word)
return adj_rows, adj_cols, adj_weights
def build_adjacency(ds_name: str, cfg: PreProcessingConfigs):
"""Build Adjacency Matrix of Doc-Word Heterogeneous Graph"""
# input files
ds_corpus = cfg.corpus_shuffled_dir + ds_name + ".txt"
ds_corpus_vocabulary = cfg.corpus_shuffled_vocab_dir + ds_name + '.vocab'
ds_corpus_train_idx = cfg.corpus_shuffled_split_index_dir + ds_name + '.train'
ds_corpus_test_idx = cfg.corpus_shuffled_split_index_dir + ds_name + '.test'
# checkers
check_data_set(data_set_name=ds_name, all_data_set_names=cfg.data_sets)
check_paths(ds_corpus, ds_corpus_vocabulary, ds_corpus_train_idx, ds_corpus_test_idx)
create_dir(dir_path=cfg.corpus_shuffled_adjacency_dir, overwrite=False)
docs_of_words = [line.split() for line in open(file=ds_corpus)]
vocab = open(ds_corpus_vocabulary).read().splitlines() # Extract Vocabulary.
word_to_id = {word: i for i, word in enumerate(vocab)} # Word to its id.
train_size = len(open(ds_corpus_train_idx).readlines()) # Real train-size, not adjusted.
test_size = len(open(ds_corpus_test_idx).readlines()) # Real test-size.
windows_of_words = extract_windows(docs_of_words=docs_of_words, window_size=20)
# Extract word-word weights
rows, cols, weights = extract_pmi_word_weights(windows_of_words, word_to_id, vocab, train_size)
# As an alternative, use cosine similarity of word vectors as weights:
# ds_corpus_word_vectors = cfg.CORPUS_WORD_VECTORS_DIR + ds_name + '.word_vectors'
# rows, cols, weights = extract_cosine_similarity_word_weights(vocab, train_size, ds_corpus_word_vectors)
# Extract word-doc weights
rows, cols, weights = extract_tf_idf_doc_word_weights(rows, cols, weights, vocab,
train_size, docs_of_words, word_to_id)
adjacency_len = train_size + len(vocab) + test_size
adjacency_matrix = csr_matrix((weights, (rows, cols)), shape=(adjacency_len, adjacency_len))
# Dump Adjacency Matrix
with open(cfg.corpus_shuffled_adjacency_dir + "/ind.{}.adj".format(ds_name), 'wb') as f:
pickle.dump(adjacency_matrix, f)
print("[INFO] Adjacency Dir='{}'".format(cfg.corpus_shuffled_adjacency_dir))
print("[INFO] ========= EXTRACTED ADJACENCY MATRIX: Heterogenous doc-word adjacency matrix. =========")