-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathSDRReg.m
148 lines (134 loc) · 6.59 KB
/
SDRReg.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
%SDRSAC
% M and B are input point cloud (can be dense)
function [out] = SDRReg(M, B, config)
add_dependencies;
%rng(2912670);
iter=0;
stop = false;
out.time = 0; out.iter = 0; out.maxInls = 0;
M_subsampled = subSamplePointCloud(M, config.NSubsample, 'random');
B_subsampled = subSamplePointCloud(B, config.NSubsample, 'random');
B_subsampled_Tree=KDTreeSearcher(B_subsampled');
%Now, compute the surface normals
normalM = computeNormal(M); normalB = computeNormal(B);
MTree = KDTreeSearcher(M'); BTree = KDTreeSearcher(B');
cMIdx = knnsearch(MTree, M_subsampled');
cBIdx = knnsearch(BTree, B_subsampled');
normalM_subsampled = normalM(:, cMIdx);
normalB_subsampled = normalB(:, cBIdx);
n = config.pointPerSample;
maxInls = 0;
% For large-span sampling
bb = boundingBox(M_subsampled);
maxDist = abs(bb(:,2) - bb(:,1));
config.pointDistance = config.pointDistance*min(maxDist);
% For parallel
PTM = cell( config.innerIter,1); PRT = cell( config.innerIter, 1);
PInls = zeros( config.innerIter,1); PTime = zeros(config.innerIter, 1);
% Start sampling
while (iter < config.maxIter&& ~stop)
tic;
idxBPool = []; idxM = [];
for sp = 1:config.kSample
CS = [];
while (isempty(CS))
disp('---------Subsample for congruent----------');
[idxMC, r1, r2, d1, d2, angle] = sampleCoplanarPoints(M_subsampled, idxM, config);
B_subsampled_for_congruent = B_subsampled(:, randsample(size(B_subsampled,2), min(config.SamplesForCongruent, size(B_subsampled,2))));
CS = findCongruentSet(B_subsampled_for_congruent, r1, r2, d1, d2, angle, config);
% close all; plotPointClouds(M_subsampled, M_subsampled(:, idxMC), 'b.', 'ro');
% hold on;
% plot_plane( M_subsampled(:, idxMC(1:3)));
% if (length(CS)>0)
% figure;
% plotPointClouds(B_subsampled, B_subsampled(:, CS(1,:)), 'b.', 'ro');
% hold on;
% plot_plane( B_subsampled(:, CS(1,1:3)));
% end
%
end
idxM = [idxM; idxMC];
idxBPool = [idxBPool; CS(:)];
end
% Now, a subset of M has been sampled and its congruent sets
idxBPool = unique(idxBPool);
M_congruent = M_subsampled(:, idxM);
normalM_congruent = normalM_subsampled(:, idxM);
B_congruent = B_subsampled_for_congruent(:, idxBPool);
normalB_congruent = normalB_subsampled(:, idxBPool);
m = M_congruent;
normalm = normalM_congruent;
nIter = config.innerIter;
% Generate samples for parfor
gIdx =zeros(nIter, n);
for it=1:nIter
gIdx(it,:) = randsample(size(B_congruent,2), n)';
%gIdx(it,:) = samplePoints(B_congruent, n, [], config);
end
if (size(idxBPool)<=n+1)
nIter = 1;
disp('idxBPool'); disp(size(idxBPool));
end
out.time = out.time+toc;
iter = iter + nIter;
parfor it = 1:nIter
tic;
idxB = gIdx(it,:);
b = B_congruent(:, idxB);
normalb = normalB_congruent(:, idxB);
[Rs,ts, ~, corrB] = sdpReg(m, b, normalm, normalb, config);
if (~isempty(corrB))
TM = Rs * M_subsampled + repmat(ts, 1, size(M_subsampled, 2));
%[Ricp, Ticp] = icp(B_subsampled, TM, 'Matching', 'kDtree', 'iter', 20);
%Ricp = eye(3); Ticp = zeros(3,1);
[Ricp, Ticp] = icp(B_subsampled, TM, 'Matching', 'kDtree', 'WorstRejection', 0.3, 'iter', 20);
%[Ricp, Ticp] = huber_icp(B, TM, 20, 5, 1);
%[Ricp, Ticp] = huber_icp(B_subsampled, TM);
%Ricp = Rs; Ticp = ts;
TMICP = Ricp*Rs*M_subsampled + repmat(Ricp*ts + Ticp, 1, size(M_subsampled, 2));
inls_icp = countCorrespondences(TMICP, B_subsampled_Tree, config.epsilon_sampled);
TMTree = KDTreeSearcher(TMICP');
inls_icp2 = countCorrespondences(B_subsampled, TMTree,config.epsilon_sampled);
inls_icp = min(inls_icp, inls_icp2);
PRT{it} = [Ricp*Rs Ricp*ts + Ticp];
%PRT{it} = [Rs ts];
PTM{it} = Ricp*Rs*M_subsampled + repmat(Ricp*ts + Ticp, 1, size(M_subsampled, 2));
PInls(it) = inls_icp;
end
PTime(it) = toc;
disp(PTime(it));
end
out.time = out.time + sum(PTime);
disp(PInls);
disp(['======CURRENT MAX = ' num2str(maxInls)]);
[nInls,idx] = max(PInls);
if (nInls > maxInls)
maxInls = nInls;
bestRT = PRT{idx};
out.bestR = bestRT(:,1:3); out.bestT = bestRT(:, 4);
TM = out.bestR*M + repmat(out.bestT, 1, size(M, 2));
%[Ricp, Ticp] = icp(B, TM, 'Matching', 'kDtree', 'WorstRejection', 0.2, 'iter', 50);
%[Ricp, Ticp] = huber_icp(B, TM);
% [Ricp, Ticp] = icp(B, TM);
% TMICP = Ricp * TM + Ticp;
%
TMTree = KDTreeSearcher(TM');
totalInls = countCorrespondences(TM, BTree, config.epsilon);
totalInls2 = countCorrespondences(B, TMTree, config.epsilon);
out.inls = maxInls;
out.totalIns = totalInls;
close all; plotPointClouds(B_subsampled, PTM{idx}, 'b.','r.');
figure;
plotPointClouds(B, TM, 'b.','r.');
disp('---MaxInls----'); disp(maxInls);
disp('---Total----'); disp(totalInls);
disp('---Total2----'); disp(totalInls2);
disp(out.bestR); disp(out.bestT);
out.cloudA = TM; out.cloudB = B;
end
T = computeStopping(0.99, maxInls./size(M,2));
if (iter>=T && iter >= config.minIterRequired)
stop = true;
end
end
end