-
Notifications
You must be signed in to change notification settings - Fork 752
/
Copy pathnumeric-templates.h
371 lines (335 loc) · 12 KB
/
numeric-templates.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
//===-- runtime/numeric-templates.h -----------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Generic class and function templates used for implementing
// various numeric intrinsics (EXPONENT, FRACTION, etc.).
//
// This header file also defines generic templates for "basic"
// math operations like abs, isnan, etc. The Float128Math
// library provides specializations for these templates
// for the data type corresponding to CppTypeFor<TypeCategory::Real, 16>
// on the target.
#ifndef FORTRAN_RUNTIME_NUMERIC_TEMPLATES_H_
#define FORTRAN_RUNTIME_NUMERIC_TEMPLATES_H_
#include "terminator.h"
#include "tools.h"
#include "flang/Common/api-attrs.h"
#include "flang/Common/erfc-scaled.h"
#include "flang/Common/float128.h"
#include <cstdint>
#include <limits>
namespace Fortran::runtime {
// MAX/MIN/LOWEST values for different data types.
// MaxOrMinIdentity returns MAX or LOWEST value of the given type.
template <TypeCategory CAT, int KIND, bool IS_MAXVAL, typename Enable = void>
struct MaxOrMinIdentity {
using Type = CppTypeFor<CAT, KIND>;
static constexpr RT_API_ATTRS Type Value() {
return IS_MAXVAL ? std::numeric_limits<Type>::lowest()
: std::numeric_limits<Type>::max();
}
};
// std::numeric_limits<> may not know int128_t
template <bool IS_MAXVAL>
struct MaxOrMinIdentity<TypeCategory::Integer, 16, IS_MAXVAL> {
using Type = CppTypeFor<TypeCategory::Integer, 16>;
static constexpr RT_API_ATTRS Type Value() {
return IS_MAXVAL ? Type{1} << 127 : ~Type{0} >> 1;
}
};
#if HAS_FLOAT128
// std::numeric_limits<> may not support __float128.
//
// Usage of GCC quadmath.h's FLT128_MAX is complicated by the fact that
// even GCC complains about 'Q' literal suffix under -Wpedantic.
// We just recreate FLT128_MAX ourselves.
//
// This specialization must engage only when
// CppTypeFor<TypeCategory::Real, 16> is __float128.
template <bool IS_MAXVAL>
struct MaxOrMinIdentity<TypeCategory::Real, 16, IS_MAXVAL,
typename std::enable_if_t<
std::is_same_v<CppTypeFor<TypeCategory::Real, 16>, __float128>>> {
using Type = __float128;
static RT_API_ATTRS Type Value() {
// Create a buffer to store binary representation of __float128 constant.
constexpr std::size_t alignment =
std::max(alignof(Type), alignof(std::uint64_t));
alignas(alignment) char data[sizeof(Type)];
// First, verify that our interpretation of __float128 format is correct,
// e.g. by checking at least one known constant.
*reinterpret_cast<Type *>(data) = Type(1.0);
if (*reinterpret_cast<std::uint64_t *>(data) != 0 ||
*(reinterpret_cast<std::uint64_t *>(data) + 1) != 0x3FFF000000000000) {
Terminator terminator{__FILE__, __LINE__};
terminator.Crash("not yet implemented: no full support for __float128");
}
// Recreate FLT128_MAX.
*reinterpret_cast<std::uint64_t *>(data) = 0xFFFFFFFFFFFFFFFF;
*(reinterpret_cast<std::uint64_t *>(data) + 1) = 0x7FFEFFFFFFFFFFFF;
Type max = *reinterpret_cast<Type *>(data);
return IS_MAXVAL ? -max : max;
}
};
#endif // HAS_FLOAT128
// Minimum finite representable value.
// For floating-point types, returns minimum positive normalized value.
template <int PREC, typename T> struct MinValue {
static RT_API_ATTRS T get() { return std::numeric_limits<T>::min(); }
};
template <typename T> struct MinValue<11, T> {
// TINY(0._2)
static constexpr RT_API_ATTRS T get() { return 0.00006103515625E-04; }
};
#if HAS_FLOAT128
template <> struct MinValue<113, CppTypeFor<TypeCategory::Real, 16>> {
using Type = CppTypeFor<TypeCategory::Real, 16>;
static RT_API_ATTRS Type get() {
// Create a buffer to store binary representation of __float128 constant.
constexpr std::size_t alignment =
std::max(alignof(Type), alignof(std::uint64_t));
alignas(alignment) char data[sizeof(Type)];
// First, verify that our interpretation of __float128 format is correct,
// e.g. by checking at least one known constant.
*reinterpret_cast<Type *>(data) = Type(1.0);
if (*reinterpret_cast<std::uint64_t *>(data) != 0 ||
*(reinterpret_cast<std::uint64_t *>(data) + 1) != 0x3FFF000000000000) {
Terminator terminator{__FILE__, __LINE__};
terminator.Crash("not yet implemented: no full support for __float128");
}
// Recreate FLT128_MIN.
*reinterpret_cast<std::uint64_t *>(data) = 0;
*(reinterpret_cast<std::uint64_t *>(data) + 1) = 0x1000000000000;
return *reinterpret_cast<Type *>(data);
}
};
#endif // HAS_FLOAT128
template <typename T> struct ABSTy {
static constexpr RT_API_ATTRS T compute(T x) { return std::abs(x); }
};
// Suppress the warnings about calling __host__-only
// 'long double' std::frexp, from __device__ code.
RT_DIAG_PUSH
RT_DIAG_DISABLE_CALL_HOST_FROM_DEVICE_WARN
template <typename T> struct FREXPTy {
static constexpr RT_API_ATTRS T compute(T x, int *e) {
return std::frexp(x, e);
}
};
RT_DIAG_POP
template <typename T> struct ILOGBTy {
static constexpr RT_API_ATTRS int compute(T x) { return std::ilogb(x); }
};
template <typename T> struct ISINFTy {
static constexpr RT_API_ATTRS bool compute(T x) { return std::isinf(x); }
};
template <typename T> struct ISNANTy {
static constexpr RT_API_ATTRS bool compute(T x) { return std::isnan(x); }
};
template <typename T> struct LDEXPTy {
template <typename ET> static constexpr RT_API_ATTRS T compute(T x, ET e) {
return std::ldexp(x, e);
}
};
template <typename T> struct MAXTy {
static constexpr RT_API_ATTRS T compute() {
return std::numeric_limits<T>::max();
}
};
#if HAS_LDBL128 || HAS_FLOAT128
template <> struct MAXTy<CppTypeFor<TypeCategory::Real, 16>> {
static CppTypeFor<TypeCategory::Real, 16> compute() {
return MaxOrMinIdentity<TypeCategory::Real, 16, true>::Value();
}
};
#endif
template <int PREC, typename T> struct MINTy {
static constexpr RT_API_ATTRS T compute() { return MinValue<PREC, T>::get(); }
};
template <typename T> struct QNANTy {
static constexpr RT_API_ATTRS T compute() {
return std::numeric_limits<T>::quiet_NaN();
}
};
template <typename T> struct SQRTTy {
static constexpr RT_API_ATTRS T compute(T x) { return std::sqrt(x); }
};
// EXPONENT (16.9.75)
template <typename RESULT, typename ARG>
inline RT_API_ATTRS RESULT Exponent(ARG x) {
if (ISINFTy<ARG>::compute(x) || ISNANTy<ARG>::compute(x)) {
return MAXTy<RESULT>::compute(); // +/-Inf, NaN -> HUGE(0)
} else if (x == 0) {
return 0; // 0 -> 0
} else {
return ILOGBTy<ARG>::compute(x) + 1;
}
}
// FRACTION (16.9.80)
template <typename T> inline RT_API_ATTRS T Fraction(T x) {
if (ISNANTy<T>::compute(x)) {
return x; // NaN -> same NaN
} else if (ISINFTy<T>::compute(x)) {
return QNANTy<T>::compute(); // +/-Inf -> NaN
} else if (x == 0) {
return x; // 0 -> same 0
} else {
int ignoredExp;
return FREXPTy<T>::compute(x, &ignoredExp);
}
}
// SET_EXPONENT (16.9.171)
template <typename T> inline RT_API_ATTRS T SetExponent(T x, std::int64_t p) {
if (ISNANTy<T>::compute(x)) {
return x; // NaN -> same NaN
} else if (ISINFTy<T>::compute(x)) {
return QNANTy<T>::compute(); // +/-Inf -> NaN
} else if (x == 0) {
return x; // return negative zero if x is negative zero
} else {
int expo{ILOGBTy<T>::compute(x) + 1};
auto ip{static_cast<int>(p - expo)};
if (ip != p - expo) {
ip = p < 0 ? std::numeric_limits<int>::min()
: std::numeric_limits<int>::max();
}
return LDEXPTy<T>::compute(x, ip); // x*2**(p-e)
}
}
// MOD & MODULO (16.9.135, .136)
template <bool IS_MODULO, typename T>
inline RT_API_ATTRS T RealMod(
T a, T p, const char *sourceFile, int sourceLine) {
if (p == 0) {
Terminator{sourceFile, sourceLine}.Crash(
IS_MODULO ? "MODULO with P==0" : "MOD with P==0");
}
if (ISNANTy<T>::compute(a) || ISNANTy<T>::compute(p) ||
ISINFTy<T>::compute(a)) {
return QNANTy<T>::compute();
} else if (IS_MODULO && ISINFTy<T>::compute(p)) {
// Other compilers behave consistently for MOD(x, +/-INF)
// and always return x. This is probably related to
// implementation of std::fmod(). Stick to this behavior
// for MOD, but return NaN for MODULO(x, +/-INF).
return QNANTy<T>::compute();
}
T aAbs{ABSTy<T>::compute(a)};
T pAbs{ABSTy<T>::compute(p)};
if (aAbs <= static_cast<T>(std::numeric_limits<std::int64_t>::max()) &&
pAbs <= static_cast<T>(std::numeric_limits<std::int64_t>::max())) {
if (auto aInt{static_cast<std::int64_t>(a)}; a == aInt) {
if (auto pInt{static_cast<std::int64_t>(p)}; p == pInt) {
// Fast exact case for integer operands
auto mod{aInt - (aInt / pInt) * pInt};
if constexpr (IS_MODULO) {
if (mod == 0) {
// Return properly signed zero.
return pInt > 0 ? T{0} : -T{0};
}
if ((aInt > 0) != (pInt > 0)) {
mod += pInt;
}
} else {
if (mod == 0) {
// Return properly signed zero.
return aInt > 0 ? T{0} : -T{0};
}
}
return static_cast<T>(mod);
}
}
}
if constexpr (std::is_same_v<T, float> || std::is_same_v<T, double> ||
std::is_same_v<T, long double>) {
// std::fmod() semantics on signed operands seems to match
// the requirements of MOD(). MODULO() needs adjustment.
T result{std::fmod(a, p)};
if constexpr (IS_MODULO) {
if ((a < 0) != (p < 0)) {
if (result == 0.) {
result = -result;
} else {
result += p;
}
}
}
return result;
} else {
// The standard defines MOD(a,p)=a-AINT(a/p)*p and
// MODULO(a,p)=a-FLOOR(a/p)*p, but those definitions lose
// precision badly due to cancellation when ABS(a) is
// much larger than ABS(p).
// Insights:
// - MOD(a,p)=MOD(a-n*p,p) when a>0, p>0, integer n>0, and a>=n*p
// - when n is a power of two, n*p is exact
// - as a>=n*p, a-n*p does not round.
// So repeatedly reduce a by all n*p in decreasing order of n;
// what's left is the desired remainder. This is basically
// the same algorithm as arbitrary precision binary long division,
// discarding the quotient.
T tmp{aAbs};
for (T adj{SetExponent(pAbs, Exponent<int>(aAbs))}; tmp >= pAbs; adj /= 2) {
if (tmp >= adj) {
tmp -= adj;
if (tmp == 0) {
break;
}
}
}
if (a < 0) {
tmp = -tmp;
}
if constexpr (IS_MODULO) {
if ((a < 0) != (p < 0)) {
if (tmp == 0.) {
tmp = -tmp;
} else {
tmp += p;
}
}
}
return tmp;
}
}
// RRSPACING (16.9.164)
template <int PREC, typename T> inline RT_API_ATTRS T RRSpacing(T x) {
if (ISNANTy<T>::compute(x)) {
return x; // NaN -> same NaN
} else if (ISINFTy<T>::compute(x)) {
return QNANTy<T>::compute(); // +/-Inf -> NaN
} else if (x == 0) {
return 0; // 0 -> 0
} else {
return LDEXPTy<T>::compute(
ABSTy<T>::compute(x), PREC - (ILOGBTy<T>::compute(x) + 1));
}
}
// SPACING (16.9.180)
template <int PREC, typename T> inline RT_API_ATTRS T Spacing(T x) {
T tiny{MINTy<PREC, T>::compute()};
if (ISNANTy<T>::compute(x)) {
return x; // NaN -> same NaN
} else if (ISINFTy<T>::compute(x)) {
return QNANTy<T>::compute(); // +/-Inf -> NaN
} else if (x == 0) { // 0 -> TINY(x)
return tiny;
} else {
T result{LDEXPTy<T>::compute(
static_cast<T>(1.0), ILOGBTy<T>::compute(x) + 1 - PREC)}; // 2**(e-p)
// All compilers return TINY(x) for |x| <= TINY(x), but differ over whether
// SPACING(x) can be < TINY(x) for |x| > TINY(x). The most common precedent
// is to never return a value < TINY(x).
return result <= tiny ? tiny : result;
}
}
// ERFC_SCALED (16.9.71)
template <typename T> inline RT_API_ATTRS T ErfcScaled(T arg) {
return common::ErfcScaled(arg);
}
} // namespace Fortran::runtime
#endif // FORTRAN_RUNTIME_NUMERIC_TEMPLATES_H_