-
Notifications
You must be signed in to change notification settings - Fork 247
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
No XPU devices found #712
Comments
I fixed this issue by switching to Windows. But it doesn't work properly, The code below: import torch
import intel_extension_for_pytorch as ipex
device = "xpu"
tensor = torch.randn(3, 3)
tensor = tensor.to(device)
print(tensor)
print(f"Tensor on device: {tensor.device}") The error thrown is: Traceback (most recent call last):
File "C:\Users\techn\OneDrive\Desktop\maria\test.py", line 9, in <module>
print(tensor)
File "C:\Users\techn\miniconda3\envs\ml-xpu\lib\site-packages\torch\_tensor.py", line 431, in __repr__
return torch._tensor_str._str(self, tensor_contents=tensor_contents)
File "C:\Users\techn\miniconda3\envs\ml-xpu\lib\site-packages\torch\_tensor_str.py", line 664, in _str
return _str_intern(self, tensor_contents=tensor_contents)
File "C:\Users\techn\miniconda3\envs\ml-xpu\lib\site-packages\torch\_tensor_str.py", line 595, in _str_intern
tensor_str = _tensor_str(self, indent)
File "C:\Users\techn\miniconda3\envs\ml-xpu\lib\site-packages\torch\_tensor_str.py", line 347, in _tensor_str
formatter = _Formatter(get_summarized_data(self) if summarize else self)
File "C:\Users\techn\miniconda3\envs\ml-xpu\lib\site-packages\torch\_tensor_str.py", line 138, in __init__
tensor_view, torch.isfinite(tensor_view) & tensor_view.ne(0)
RuntimeError: The program was built for 1 devices
Build program log for 'Intel(R) Iris(R) Xe Graphics':
-11 (PI_ERROR_BUILD_PROGRAM_FAILURE) I think it is able to move the tensor to XPU but fails when I try to retrieve it. Hope anyone helps ASAP with this> |
I also tried training a dummy linear model and I get the same error: import torch
import intel_extension_for_pytorch as ipex
import torch.nn as nn
import torch.optim as optim
class SimpleModel(nn.Module):
def __init__(self):
super(SimpleModel, self).__init__()
self.linear = nn.Linear(100, 500)
def forward(self, x):
return self.linear(x)
model = SimpleModel().to("xpu:0")
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)
input_data = torch.randn(64, 100).to("xpu:0")
target_data = torch.randn(64, 500).to("xpu:0")
for epoch in range(10):
model.train()
outputs = model(input_data)
loss = criterion(outputs, target_data)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(f'Epoch [{epoch+1}/10], Loss: {loss.item():.4f}')
``` |
@Bhargav230m unfortunately, IPEX does not support Iris Xe Graphics. The only consumer graphics card supported is Arc: |
@alexsin368 I wana train a model and OpenVINO is mainly for inference |
@Bhargav230m if you would like to train a model using Intel hardware, I recommend going to the Intel® Tiber™ Developer Cloud at cloud.intel.com to get access to our data center GPUs and Gaudi AI accelerators. |
No actions taken or needed at this time, closing ticket. |
Describe the bug
Error:
Why is it returning no XPU devices? I have Iris Xe Graphics with a CPU i5 1135G7
I have followed all the installation steps here: https://intel.github.io/intel-extension-for-pytorch/#installation?platform=gpu&version=v2.1.40%2bxpu&os=linux%2fwsl2&package=pip
Versions
(ml) techpowerb@ruby:~$ python collect_env.py
Collecting environment information...
PyTorch version: 2.1.0.post3+cxx11.abi
PyTorch CXX11 ABI: Yes
IPEX version: 2.1.40+xpu
IPEX commit: 80ed476
Build type: Release
OS: Ubuntu 22.04.3 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: N/A
IGC version: 2024.2.1 (2024.2.1.20240711)
CMake version: N/A
Libc version: glibc-2.35
Python version: 3.9.19 (main, May 6 2024, 19:43:03) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.153.1-microsoft-standard-WSL2-x86_64-with-glibc2.35
Is XPU available: False
DPCPP runtime version: 2024.2
MKL version: 2024.2
GPU models and configuration:
Intel OpenCL ICD version: 23.17.26241.33-647
22.0422.04Level Zero version: 1.3.26241.33-647
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 39 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 8
On-line CPU(s) list: 0-7
Vendor ID: GenuineIntel
Model name: 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz
CPU family: 6
Model: 140
Thread(s) per core: 2
Core(s) per socket: 4
Socket(s): 1
Stepping: 1
BogoMIPS: 4838.39
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology tsc_reliable nonstop_tsc cpuid pni pclmulqdq vmx ssse3 fma cx16 pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves avx512vbmi umip avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid movdiri movdir64b fsrm avx512_vp2intersect md_clear flush_l1d arch_capabilities
Virtualization: VT-x
Hypervisor vendor: Microsoft
Virtualization type: full
L1d cache: 192 KiB (4 instances)
L1i cache: 128 KiB (4 instances)
L2 cache: 5 MiB (4 instances)
L3 cache: 8 MiB (1 instance)
Vulnerability Gather data sampling: Unknown: Dependent on hypervisor status
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Retbleed: Mitigation; Enhanced IBRS
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] intel_extension_for_pytorch==2.1.40+xpu
[pip3] numpy==1.26.4
[pip3] torch==2.1.0.post3+cxx11.abi
[pip3] torchaudio==2.1.0.post3+cxx11.abi
[pip3] torchvision==0.16.0.post3+cxx11.abi
[conda] intel-extension-for-pytorch 2.1.40+xpu pypi_0 pypi
[conda] numpy 1.26.4 pypi_0 pypi
[conda] torch 2.1.0.post3+cxx11.abi pypi_0 pypi
[conda] torchaudio 2.1.0.post3+cxx11.abi pypi_0 pypi
[conda] torchvision 0.16.0.post3+cxx11.abi pypi_0 pypi``
The text was updated successfully, but these errors were encountered: