This repository has been archived by the owner on Jul 18, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathdoc_loader.py
354 lines (299 loc) · 13.7 KB
/
doc_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
"""
Copyright 2024 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
https://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import os
import re
from pathlib import Path
from typing import Optional, List, Callable, Union, Sequence, Any
from pyrecdp.core.import_utils import check_availability_and_install
from pyrecdp.primitives.document.schema import Document
from pyrecdp.primitives.operations.base import LLMOPERATORS
from pyrecdp.primitives.operations.text_reader import TextReader
class DocumentLoader(TextReader):
def __init__(self,
loader: Optional[str] = None,
loader_args: Optional[dict] = None,
args_dict: Optional[dict] = None, requirements=None):
"""
Args:
loader: The class name of the langchain document loader to use.
loader_args: A dictionary of arguments to pass to the langchain document
loader.
"""
if requirements is None:
requirements = []
if loader is None or not isinstance(loader, str):
raise ValueError(f"loader must be provide!")
if not isinstance(loader, str):
raise ValueError(f"loader must be a class name of langchain document loader")
if loader_args is not None and not isinstance(loader_args, dict):
raise ValueError(f"loader_args must be a dictionary arguments")
self.loader_args = loader_args or {}
self.loader = loader
settings = {
'loader': self.loader,
'loader_args': self.loader_args,
'requirements': requirements,
}
settings.update(args_dict or {})
super().__init__(settings, requirements=requirements)
self.support_ray = True
self.support_spark = True
def load_documents(self):
from pyrecdp.primitives.document.reader import read_from_langchain
return read_from_langchain(self.loader, self.loader_args)
def process_rayds(self, ds=None):
import ray
self.cache = ray.data.from_items(self.load_documents())
if ds is not None:
self.cache = self.union_ray_ds(ds, self.cache)
return self.cache
def process_spark(self, spark, spark_df=None):
self.cache = spark.createDataFrame(self.load_documents())
if spark_df is not None:
self.cache = self.union_spark_df(spark_df, self.cache)
return self.cache
LLMOPERATORS.register(DocumentLoader)
class DirectoryLoader(TextReader):
def __init__(self, input_dir: Optional[Union[str, List[str]]] = None,
glob: str = "**/[!.]*",
recursive: bool = False,
input_files: Optional[List] = None,
exclude: Optional[List] = None,
exclude_hidden: bool = True,
max_concurrency: Optional[int] = None,
required_exts: Optional[List[str]] = None,
file_loaders: Optional[dict[str, Callable[[Path], List[Document]]]] = None,
requirements=None,
pdf_ocr: bool = False,
**kwargs):
"""
Loads documents from a directory or a list of files.
Args:
input_dir: The input directory.
glob: A glob pattern to match files.
recursive: Whether to recursively search the input directory.
input_files: A list of input files.
single_text_per_document: Whether to load each file as a single document.
exclude: A list of file patterns to exclude from loading.
exclude_hidden: Whether to exclude hidden files from loading.
file_loaders: customize file loader.
required_exts: A list of file extensions that are required for documents.
pdf_ocr: Whether to use ocr to load pdf.
"""
if requirements is None:
requirements = []
if not input_dir and not input_files:
raise ValueError("Must provide either `input_dir` or `input_files`.")
settings = {
'input_dir': input_dir,
'glob': glob,
'input_files': input_files,
'recursive': recursive,
'exclude': exclude,
'exclude_hidden': exclude_hidden,
'max_concurrency': max_concurrency,
'required_exts': required_exts,
'file_loaders': file_loaders,
'pdf_ocr': pdf_ocr
}
self.input_files = input_files
self.input_dir = input_dir
self.glob = glob
self.recursive = recursive
self.exclude = exclude
self.exclude_hidden = exclude_hidden
self.max_concurrency = max_concurrency
self.required_exts = required_exts
self.file_loaders = file_loaders
self.pdf_ocr = pdf_ocr
super().__init__(args_dict=settings, requirements=requirements)
def load_documents(self):
from pyrecdp.primitives.document.reader import read_from_directory
return read_from_directory(
self.input_dir,
input_files=self.input_files,
glob=self.glob,
recursive=self.recursive,
exclude=self.exclude,
exclude_hidden=self.exclude_hidden,
max_concurrency=self.max_concurrency,
required_exts=self.required_exts,
loaders=self.file_loaders,
pdf_ocr=self.pdf_ocr,
)
def process_rayds(self, ds=None):
import ray
self.cache = ray.data.from_items(self.load_documents())
if ds is not None:
self.cache = self.union_ray_ds(ds, self.cache)
return self.cache
def process_spark(self, spark, spark_df=None):
self.cache = spark.createDataFrame(self.load_documents())
if spark_df is not None:
self.cache = self.union_spark_df(spark_df, self.cache)
return self.cache
LLMOPERATORS.register(DirectoryLoader)
class YoutubeLoader(TextReader):
def __init__(self, urls: List[str], save_dir: str = None, model='small',
num_cpus: Optional[int] = None, **kwargs):
"""
Loads documents from a directory or a list of Youtube URLs.
Args:
urls: The list of Youtube video urls.
save_dir: The directory to save loaded Youtube audio, will remove the tmp file if save_dir is None.
model: The name of the whisper model, check the available ones using whisper.available_models().
"""
settings = {
'urls': urls,
'save_dir': save_dir,
'model': model,
'num_cpus': num_cpus,
}
super().__init__(settings)
self.urls = urls
self.save_dir = save_dir
self.model_name = model
self.num_cpus = num_cpus
os.system("apt-get -qq -y install ffmpeg")
check_availability_and_install(['langchain', 'pytube', 'openai-whisper', 'youtube-transcript-api', 'yt_dlp'])
def process_rayds(self, ds=None):
import ray
url_ds = ray.data.from_items([{'url': url} for url in self.urls])
from pyrecdp.primitives.document.reader import transcribe_youtube_video
self.cache = url_ds.flat_map(lambda record: transcribe_youtube_video(record['url'], self.save_dir, self.model_name),
num_cpus=self.num_cpus)
if ds is not None:
self.cache = self.union_ray_ds(ds, self.cache)
return self.cache
def process_spark(self, spark, spark_df=None):
from pyspark.sql import DataFrame
from pyspark.sql import types as T
urls_df: DataFrame = spark.createDataFrame(self.urls, T.StringType())
schema = T.StructType([
T.StructField("text", T.StringType()),
T.StructField('metadata', T.StructType([
T.StructField('source', T.StringType()),
T.StructField('language', T.StringType()),
]))
])
from pyrecdp.primitives.document.reader import transcribe_youtube_video
docs_rdd = urls_df.rdd.flatMap(
lambda row: transcribe_youtube_video(row['value'], self.save_dir, self.model_name))
self.cache = spark.createDataFrame(docs_rdd, schema)
if spark_df is not None:
self.cache = self.union_spark_df(spark_df, self.cache)
return self.cache
LLMOPERATORS.register(YoutubeLoader)
class UrlLoader(TextReader):
def __init__(
self,
urls: Union[str, List[str]] = None,
max_depth: Optional[int] = 1,
use_async: Optional[bool] = None,
extractor: Optional[Callable[[str], str]] = None,
metadata_extractor: Optional[Callable[[str, str], str]] = None,
exclude_dirs: Optional[Sequence[str]] = (),
timeout: Optional[int] = 10,
prevent_outside: bool = True,
link_regex: Union[str, re.Pattern, None] = None,
headers: Optional[dict] = None,
check_response_status: bool = False,
text_to_markdown: bool = True,
requirements=None,
num_cpus: Optional[int] = None,
text_key: str = None,
) -> None:
"""Initialize with URL to crawl and any subdirectories to exclude.
Args:
urls: The URLS to crawl.
max_depth: The max depth of the recursive loading.
use_async: Whether to use asynchronous loading.
If True, this function will not be lazy, but it will still work in the
expected way, just not lazy.
extractor: A function to extract document contents from raw html.
When extract function returns an empty string, the document is
ignored. Default extractor will attempt to use BeautifulSoup4 to extract the text
metadata_extractor: A function to extract metadata from raw html and the
source url (args in that order). Default extractor will attempt
to use BeautifulSoup4 to extract the title, description and language
of the page.
exclude_dirs: A list of subdirectories to exclude.
timeout: The timeout for the requests, in the unit of seconds. If None then
connection will not timeout.
prevent_outside: If True, prevent loading from urls which are not children
of the root url.
link_regex: Regex for extracting sub-links from the raw html of a web page.
check_response_status: If True, check HTTP response status and skip
URLs with error responses (400-599).
num_cpus: The number of CPUs to reserve for each parallel url read worker.
text_key: text key to process.
"""
if requirements is None:
requirements = ['bs4', 'markdownify', 'langchain']
self.loader_kwargs = {
'max_depth': max_depth,
'use_async': use_async,
'extractor': extractor,
'metadata_extractor': metadata_extractor,
'exclude_dirs': exclude_dirs,
'timeout': timeout,
'prevent_outside': prevent_outside,
'link_regex': link_regex,
'headers': headers,
'check_response_status': check_response_status,
}
settings = self.loader_kwargs.copy()
settings.update({'urls': urls, 'text_to_markdown': text_to_markdown, 'num_cpus': num_cpus, 'text_key': text_key})
self.text_to_markdown = text_to_markdown
self.text_key = text_key
super().__init__(settings, requirements=requirements)
self.support_spark = True
self.support_ray = True
self.num_cpus = num_cpus
if urls:
if isinstance(urls, str):
urls = [urls]
self.urls = set(urls)
def process_rayds(self, ds=None):
import ray
if self.text_key:
urls_ds = ds.select_columns(['url'])
else:
urls_ds = ray.data.from_items([{'url': url} for url in self.urls])
from pyrecdp.primitives.document.reader import read_from_url
self.cache = urls_ds.flat_map(
lambda record: read_from_url(record['url'], self.text_to_markdown, **self.loader_kwargs),
num_cpus=self.num_cpus)
if ds is not None and not self.text_key:
self.cache = self.union_ray_ds(ds, self.cache)
return self.cache
def process_spark(self, spark, spark_df=None):
from pyspark.sql import DataFrame
from pyspark.sql import types as T
urls_df: DataFrame = spark.createDataFrame(self.urls, T.StringType())
doc_schema = T.StructType([
T.StructField("text", T.StringType()),
T.StructField('metadata', T.StructType([
T.StructField('title', T.StringType()),
T.StructField('description', T.StringType()),
T.StructField('language', T.StringType()),
]))
])
from pyrecdp.primitives.document.reader import read_from_url
docs_rdd = urls_df.rdd.flatMap(
lambda row: read_from_url(row['value'], self.text_to_markdown, **self.loader_kwargs))
self.cache = spark.createDataFrame(docs_rdd, doc_schema)
if spark_df is not None:
self.cache = self.union_spark_df(spark_df, self.cache)
return self.cache
LLMOPERATORS.register(UrlLoader)