forked from cilium/ebpf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
prog.go
967 lines (827 loc) · 28 KB
/
prog.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
package ebpf
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"math"
"path/filepath"
"runtime"
"strings"
"time"
"github.com/cilium/ebpf/asm"
"github.com/cilium/ebpf/btf"
"github.com/cilium/ebpf/internal"
"github.com/cilium/ebpf/internal/sys"
"github.com/cilium/ebpf/internal/unix"
)
// ErrNotSupported is returned whenever the kernel doesn't support a feature.
var ErrNotSupported = internal.ErrNotSupported
// ProgramID represents the unique ID of an eBPF program.
type ProgramID uint32
const (
// Number of bytes to pad the output buffer for BPF_PROG_TEST_RUN.
// This is currently the maximum of spare space allocated for SKB
// and XDP programs, and equal to XDP_PACKET_HEADROOM + NET_IP_ALIGN.
outputPad = 256 + 2
)
// DefaultVerifierLogSize is the default number of bytes allocated for the
// verifier log.
const DefaultVerifierLogSize = 64 * 1024
// maxVerifierLogSize is the maximum size of verifier log buffer the kernel
// will accept before returning EINVAL.
const maxVerifierLogSize = math.MaxUint32 >> 2
// ProgramOptions control loading a program into the kernel.
type ProgramOptions struct {
// Bitmap controlling the detail emitted by the kernel's eBPF verifier log.
// LogLevel-type values can be ORed together to request specific kinds of
// verifier output. See the documentation on [ebpf.LogLevel] for details.
//
// opts.LogLevel = (ebpf.LogLevelBranch | ebpf.LogLevelStats)
//
// If left to its default value, the program will first be loaded without
// verifier output enabled. Upon error, the program load will be repeated
// with LogLevelBranch and the given (or default) LogSize value.
//
// Setting this to a non-zero value will unconditionally enable the verifier
// log, populating the [ebpf.Program.VerifierLog] field on successful loads
// and including detailed verifier errors if the program is rejected. This
// will always allocate an output buffer, but will result in only a single
// attempt at loading the program.
LogLevel LogLevel
// Controls the output buffer size for the verifier log, in bytes. See the
// documentation on ProgramOptions.LogLevel for details about how this value
// is used.
//
// If this value is set too low to fit the verifier log, the resulting
// [ebpf.VerifierError]'s Truncated flag will be true, and the error string
// will also contain a hint to that effect.
//
// Defaults to DefaultVerifierLogSize.
LogSize int
// Disables the verifier log completely, regardless of other options.
LogDisabled bool
// Type information used for CO-RE relocations.
//
// This is useful in environments where the kernel BTF is not available
// (containers) or where it is in a non-standard location. Defaults to
// use the kernel BTF from a well-known location if nil.
KernelTypes *btf.Spec
}
// ProgramSpec defines a Program.
type ProgramSpec struct {
// Name is passed to the kernel as a debug aid. Must only contain
// alpha numeric and '_' characters.
Name string
// Type determines at which hook in the kernel a program will run.
Type ProgramType
// AttachType of the program, needed to differentiate allowed context
// accesses in some newer program types like CGroupSockAddr.
//
// Available on kernels 4.17 and later.
AttachType AttachType
// Name of a kernel data structure or function to attach to. Its
// interpretation depends on Type and AttachType.
AttachTo string
// The program to attach to. Must be provided manually.
AttachTarget *Program
// The name of the ELF section this program originated from.
SectionName string
Instructions asm.Instructions
// Flags is passed to the kernel and specifies additional program
// load attributes.
Flags uint32
// License of the program. Some helpers are only available if
// the license is deemed compatible with the GPL.
//
// See https://www.kernel.org/doc/html/latest/process/license-rules.html#id1
License string
// Version used by Kprobe programs.
//
// Deprecated on kernels 5.0 and later. Leave empty to let the library
// detect this value automatically.
KernelVersion uint32
// The BTF associated with this program.
//
// Deprecated: use [CollectionSpec.Types] instead.
BTF *btf.Spec
// The byte order this program was compiled for, may be nil.
ByteOrder binary.ByteOrder
}
// Copy returns a copy of the spec.
func (ps *ProgramSpec) Copy() *ProgramSpec {
if ps == nil {
return nil
}
cpy := *ps
cpy.Instructions = make(asm.Instructions, len(ps.Instructions))
copy(cpy.Instructions, ps.Instructions)
return &cpy
}
// Tag calculates the kernel tag for a series of instructions.
//
// Use asm.Instructions.Tag if you need to calculate for non-native endianness.
func (ps *ProgramSpec) Tag() (string, error) {
return ps.Instructions.Tag(internal.NativeEndian)
}
// VerifierError is returned by [NewProgram] and [NewProgramWithOptions] if a
// program is rejected by the verifier.
//
// Use [errors.As] to access the error.
type VerifierError = internal.VerifierError
// Program represents BPF program loaded into the kernel.
//
// It is not safe to close a Program which is used by other goroutines.
type Program struct {
// Contains the output of the kernel verifier if enabled,
// otherwise it is empty.
VerifierLog string
fd *sys.FD
name string
pinnedPath string
typ ProgramType
}
// NewProgram creates a new Program.
//
// See NewProgramWithOptions for details.
func NewProgram(spec *ProgramSpec) (*Program, error) {
return NewProgramWithOptions(spec, ProgramOptions{})
}
// NewProgramWithOptions creates a new Program.
//
// Loading a program for the first time will perform
// feature detection by loading small, temporary programs.
//
// Returns a wrapped [VerifierError] if the program is rejected by the kernel.
func NewProgramWithOptions(spec *ProgramSpec, opts ProgramOptions) (*Program, error) {
if spec == nil {
return nil, errors.New("can't load a program from a nil spec")
}
prog, err := newProgramWithOptions(spec, opts)
if errors.Is(err, asm.ErrUnsatisfiedMapReference) {
return nil, fmt.Errorf("cannot load program without loading its whole collection: %w", err)
}
return prog, err
}
func newProgramWithOptions(spec *ProgramSpec, opts ProgramOptions) (*Program, error) {
if len(spec.Instructions) == 0 {
return nil, errors.New("instructions cannot be empty")
}
if spec.Type == UnspecifiedProgram {
return nil, errors.New("can't load program of unspecified type")
}
if spec.ByteOrder != nil && spec.ByteOrder != internal.NativeEndian {
return nil, fmt.Errorf("can't load %s program on %s", spec.ByteOrder, internal.NativeEndian)
}
if opts.LogSize < 0 {
return nil, errors.New("ProgramOptions.LogSize must be a positive value; disable verifier logs using ProgramOptions.LogDisabled")
}
// Kernels before 5.0 (6c4fc209fcf9 "bpf: remove useless version check for prog load")
// require the version field to be set to the value of the KERNEL_VERSION
// macro for kprobe-type programs.
// Overwrite Kprobe program version if set to zero or the magic version constant.
kv := spec.KernelVersion
if spec.Type == Kprobe && (kv == 0 || kv == internal.MagicKernelVersion) {
v, err := internal.KernelVersion()
if err != nil {
return nil, fmt.Errorf("detecting kernel version: %w", err)
}
kv = v.Kernel()
}
attr := &sys.ProgLoadAttr{
ProgType: sys.ProgType(spec.Type),
ProgFlags: spec.Flags,
ExpectedAttachType: sys.AttachType(spec.AttachType),
License: sys.NewStringPointer(spec.License),
KernVersion: kv,
}
if haveObjName() == nil {
attr.ProgName = sys.NewObjName(spec.Name)
}
insns := make(asm.Instructions, len(spec.Instructions))
copy(insns, spec.Instructions)
handle, fib, lib, err := btf.MarshalExtInfos(insns)
btfDisabled := errors.Is(err, btf.ErrNotSupported)
if err != nil && !btfDisabled {
return nil, fmt.Errorf("load ext_infos: %w", err)
}
if handle != nil {
defer handle.Close()
attr.ProgBtfFd = uint32(handle.FD())
attr.FuncInfoRecSize = btf.FuncInfoSize
attr.FuncInfoCnt = uint32(len(fib)) / btf.FuncInfoSize
attr.FuncInfo = sys.NewSlicePointer(fib)
attr.LineInfoRecSize = btf.LineInfoSize
attr.LineInfoCnt = uint32(len(lib)) / btf.LineInfoSize
attr.LineInfo = sys.NewSlicePointer(lib)
}
if err := applyRelocations(insns, opts.KernelTypes, spec.ByteOrder); err != nil {
return nil, fmt.Errorf("apply CO-RE relocations: %w", err)
}
if err := fixupAndValidate(insns); err != nil {
return nil, err
}
buf := bytes.NewBuffer(make([]byte, 0, insns.Size()))
err = insns.Marshal(buf, internal.NativeEndian)
if err != nil {
return nil, err
}
bytecode := buf.Bytes()
attr.Insns = sys.NewSlicePointer(bytecode)
attr.InsnCnt = uint32(len(bytecode) / asm.InstructionSize)
if spec.AttachTarget != nil {
targetID, err := findTargetInProgram(spec.AttachTarget, spec.AttachTo, spec.Type, spec.AttachType)
if err != nil {
return nil, fmt.Errorf("attach %s/%s: %w", spec.Type, spec.AttachType, err)
}
attr.AttachBtfId = uint32(targetID)
attr.AttachBtfObjFd = uint32(spec.AttachTarget.FD())
defer runtime.KeepAlive(spec.AttachTarget)
} else if spec.AttachTo != "" {
module, targetID, err := findTargetInKernel(spec.AttachTo, spec.Type, spec.AttachType)
if err != nil && !errors.Is(err, errUnrecognizedAttachType) {
// We ignore errUnrecognizedAttachType since AttachTo may be non-empty
// for programs that don't attach anywhere.
return nil, fmt.Errorf("attach %s/%s: %w", spec.Type, spec.AttachType, err)
}
attr.AttachBtfId = uint32(targetID)
if module != nil {
attr.AttachBtfObjFd = uint32(module.FD())
defer module.Close()
}
}
if opts.LogSize == 0 {
opts.LogSize = DefaultVerifierLogSize
}
// The caller requested a specific verifier log level. Set up the log buffer.
var logBuf []byte
if !opts.LogDisabled && opts.LogLevel != 0 {
logBuf = make([]byte, opts.LogSize)
attr.LogLevel = opts.LogLevel
attr.LogSize = uint32(len(logBuf))
attr.LogBuf = sys.NewSlicePointer(logBuf)
}
fd, err := sys.ProgLoad(attr)
if err == nil {
return &Program{unix.ByteSliceToString(logBuf), fd, spec.Name, "", spec.Type}, nil
}
// An error occurred loading the program, but the caller did not explicitly
// enable the verifier log. Re-run with branch-level verifier logs enabled to
// obtain more info. Preserve the original error to return it to the caller.
// An undersized log buffer will result in ENOSPC regardless of the underlying
// cause.
var err2 error
if !opts.LogDisabled && opts.LogLevel == 0 {
logBuf = make([]byte, opts.LogSize)
attr.LogLevel = LogLevelBranch
attr.LogSize = uint32(len(logBuf))
attr.LogBuf = sys.NewSlicePointer(logBuf)
_, err2 = sys.ProgLoad(attr)
}
switch {
case errors.Is(err, unix.EPERM):
if len(logBuf) > 0 && logBuf[0] == 0 {
// EPERM due to RLIMIT_MEMLOCK happens before the verifier, so we can
// check that the log is empty to reduce false positives.
return nil, fmt.Errorf("load program: %w (MEMLOCK may be too low, consider rlimit.RemoveMemlock)", err)
}
fallthrough
case errors.Is(err, unix.EINVAL):
if hasFunctionReferences(spec.Instructions) {
if err := haveBPFToBPFCalls(); err != nil {
return nil, fmt.Errorf("load program: %w", err)
}
}
if opts.LogSize > maxVerifierLogSize {
return nil, fmt.Errorf("load program: %w (ProgramOptions.LogSize exceeds maximum value of %d)", err, maxVerifierLogSize)
}
}
truncated := errors.Is(err, unix.ENOSPC) || errors.Is(err2, unix.ENOSPC)
err = internal.ErrorWithLog(err, logBuf, truncated)
if btfDisabled {
return nil, fmt.Errorf("load program: %w (kernel without BTF support)", err)
}
return nil, fmt.Errorf("load program: %w", err)
}
// NewProgramFromFD creates a program from a raw fd.
//
// You should not use fd after calling this function.
//
// Requires at least Linux 4.10.
func NewProgramFromFD(fd int) (*Program, error) {
f, err := sys.NewFD(fd)
if err != nil {
return nil, err
}
return newProgramFromFD(f)
}
// NewProgramFromID returns the program for a given id.
//
// Returns ErrNotExist, if there is no eBPF program with the given id.
func NewProgramFromID(id ProgramID) (*Program, error) {
fd, err := sys.ProgGetFdById(&sys.ProgGetFdByIdAttr{
Id: uint32(id),
})
if err != nil {
return nil, fmt.Errorf("get program by id: %w", err)
}
return newProgramFromFD(fd)
}
func newProgramFromFD(fd *sys.FD) (*Program, error) {
info, err := newProgramInfoFromFd(fd)
if err != nil {
fd.Close()
return nil, fmt.Errorf("discover program type: %w", err)
}
return &Program{"", fd, info.Name, "", info.Type}, nil
}
func (p *Program) String() string {
if p.name != "" {
return fmt.Sprintf("%s(%s)#%v", p.typ, p.name, p.fd)
}
return fmt.Sprintf("%s(%v)", p.typ, p.fd)
}
// Type returns the underlying type of the program.
func (p *Program) Type() ProgramType {
return p.typ
}
// Info returns metadata about the program.
//
// Requires at least 4.10.
func (p *Program) Info() (*ProgramInfo, error) {
return newProgramInfoFromFd(p.fd)
}
// Handle returns a reference to the program's type information in the kernel.
//
// Returns ErrNotSupported if the kernel has no BTF support, or if there is no
// BTF associated with the program.
func (p *Program) Handle() (*btf.Handle, error) {
info, err := p.Info()
if err != nil {
return nil, err
}
id, ok := info.BTFID()
if !ok {
return nil, fmt.Errorf("program %s: retrieve BTF ID: %w", p, ErrNotSupported)
}
return btf.NewHandleFromID(id)
}
// FD gets the file descriptor of the Program.
//
// It is invalid to call this function after Close has been called.
func (p *Program) FD() int {
return p.fd.Int()
}
// Clone creates a duplicate of the Program.
//
// Closing the duplicate does not affect the original, and vice versa.
//
// Cloning a nil Program returns nil.
func (p *Program) Clone() (*Program, error) {
if p == nil {
return nil, nil
}
dup, err := p.fd.Dup()
if err != nil {
return nil, fmt.Errorf("can't clone program: %w", err)
}
return &Program{p.VerifierLog, dup, p.name, "", p.typ}, nil
}
// Pin persists the Program on the BPF virtual file system past the lifetime of
// the process that created it
//
// Calling Pin on a previously pinned program will overwrite the path, except when
// the new path already exists. Re-pinning across filesystems is not supported.
//
// This requires bpffs to be mounted above fileName.
// See https://docs.cilium.io/en/stable/concepts/kubernetes/configuration/#mounting-bpffs-with-systemd
func (p *Program) Pin(fileName string) error {
if err := internal.Pin(p.pinnedPath, fileName, p.fd); err != nil {
return err
}
p.pinnedPath = fileName
return nil
}
// Unpin removes the persisted state for the Program from the BPF virtual filesystem.
//
// Failed calls to Unpin will not alter the state returned by IsPinned.
//
// Unpinning an unpinned Program returns nil.
func (p *Program) Unpin() error {
if err := internal.Unpin(p.pinnedPath); err != nil {
return err
}
p.pinnedPath = ""
return nil
}
// IsPinned returns true if the Program has a non-empty pinned path.
func (p *Program) IsPinned() bool {
return p.pinnedPath != ""
}
// Close the Program's underlying file descriptor, which could unload
// the program from the kernel if it is not pinned or attached to a
// kernel hook.
func (p *Program) Close() error {
if p == nil {
return nil
}
return p.fd.Close()
}
// Various options for Run'ing a Program
type RunOptions struct {
// Program's data input. Required field.
Data []byte
// Program's data after Program has run. Caller must allocate. Optional field.
DataOut []byte
// Program's context input. Optional field.
Context interface{}
// Program's context after Program has run. Must be a pointer or slice. Optional field.
ContextOut interface{}
// Number of times to run Program. Optional field. Defaults to 1.
Repeat uint32
// Optional flags.
Flags uint32
// CPU to run Program on. Optional field.
// Note not all program types support this field.
CPU uint32
// Called whenever the syscall is interrupted, and should be set to testing.B.ResetTimer
// or similar. Typically used during benchmarking. Optional field.
Reset func()
}
// Test runs the Program in the kernel with the given input and returns the
// value returned by the eBPF program. outLen may be zero.
//
// Note: the kernel expects at least 14 bytes input for an ethernet header for
// XDP and SKB programs.
//
// This function requires at least Linux 4.12.
func (p *Program) Test(in []byte) (uint32, []byte, error) {
// Older kernels ignore the dataSizeOut argument when copying to user space.
// Combined with things like bpf_xdp_adjust_head() we don't really know what the final
// size will be. Hence we allocate an output buffer which we hope will always be large
// enough, and panic if the kernel wrote past the end of the allocation.
// See https://patchwork.ozlabs.org/cover/1006822/
var out []byte
if len(in) > 0 {
out = make([]byte, len(in)+outputPad)
}
opts := RunOptions{
Data: in,
DataOut: out,
Repeat: 1,
}
ret, _, err := p.testRun(&opts)
if err != nil {
return ret, nil, fmt.Errorf("can't test program: %w", err)
}
return ret, opts.DataOut, nil
}
// Run runs the Program in kernel with given RunOptions.
//
// Note: the same restrictions from Test apply.
func (p *Program) Run(opts *RunOptions) (uint32, error) {
ret, _, err := p.testRun(opts)
if err != nil {
return ret, fmt.Errorf("can't test program: %w", err)
}
return ret, nil
}
// Benchmark runs the Program with the given input for a number of times
// and returns the time taken per iteration.
//
// Returns the result of the last execution of the program and the time per
// run or an error. reset is called whenever the benchmark syscall is
// interrupted, and should be set to testing.B.ResetTimer or similar.
//
// Note: profiling a call to this function will skew its results, see
// https://github.com/cilium/ebpf/issues/24
//
// This function requires at least Linux 4.12.
func (p *Program) Benchmark(in []byte, repeat int, reset func()) (uint32, time.Duration, error) {
if uint(repeat) > math.MaxUint32 {
return 0, 0, fmt.Errorf("repeat is too high")
}
opts := RunOptions{
Data: in,
Repeat: uint32(repeat),
Reset: reset,
}
ret, total, err := p.testRun(&opts)
if err != nil {
return ret, total, fmt.Errorf("can't benchmark program: %w", err)
}
return ret, total, nil
}
var haveProgTestRun = internal.FeatureTest("BPF_PROG_TEST_RUN", "4.12", func() error {
prog, err := NewProgram(&ProgramSpec{
// SocketFilter does not require privileges on newer kernels.
Type: SocketFilter,
Instructions: asm.Instructions{
asm.LoadImm(asm.R0, 0, asm.DWord),
asm.Return(),
},
License: "MIT",
})
if err != nil {
// This may be because we lack sufficient permissions, etc.
return err
}
defer prog.Close()
in := internal.EmptyBPFContext
attr := sys.ProgRunAttr{
ProgFd: uint32(prog.FD()),
DataSizeIn: uint32(len(in)),
DataIn: sys.NewSlicePointer(in),
}
err = sys.ProgRun(&attr)
switch {
case errors.Is(err, unix.EINVAL):
// Check for EINVAL specifically, rather than err != nil since we
// otherwise misdetect due to insufficient permissions.
return internal.ErrNotSupported
case errors.Is(err, unix.EINTR):
// We know that PROG_TEST_RUN is supported if we get EINTR.
return nil
case errors.Is(err, sys.ENOTSUPP):
// The first PROG_TEST_RUN patches shipped in 4.12 didn't include
// a test runner for SocketFilter. ENOTSUPP means PROG_TEST_RUN is
// supported, but not for the program type used in the probe.
return nil
}
return err
})
func (p *Program) testRun(opts *RunOptions) (uint32, time.Duration, error) {
if uint(len(opts.Data)) > math.MaxUint32 {
return 0, 0, fmt.Errorf("input is too long")
}
if err := haveProgTestRun(); err != nil {
return 0, 0, err
}
var ctxBytes []byte
if opts.Context != nil {
ctx := new(bytes.Buffer)
if err := binary.Write(ctx, internal.NativeEndian, opts.Context); err != nil {
return 0, 0, fmt.Errorf("cannot serialize context: %v", err)
}
ctxBytes = ctx.Bytes()
}
var ctxOut []byte
if opts.ContextOut != nil {
ctxOut = make([]byte, binary.Size(opts.ContextOut))
}
attr := sys.ProgRunAttr{
ProgFd: p.fd.Uint(),
DataSizeIn: uint32(len(opts.Data)),
DataSizeOut: uint32(len(opts.DataOut)),
DataIn: sys.NewSlicePointer(opts.Data),
DataOut: sys.NewSlicePointer(opts.DataOut),
Repeat: uint32(opts.Repeat),
CtxSizeIn: uint32(len(ctxBytes)),
CtxSizeOut: uint32(len(ctxOut)),
CtxIn: sys.NewSlicePointer(ctxBytes),
CtxOut: sys.NewSlicePointer(ctxOut),
Flags: opts.Flags,
Cpu: opts.CPU,
}
for {
err := sys.ProgRun(&attr)
if err == nil {
break
}
if errors.Is(err, unix.EINTR) {
if opts.Reset != nil {
opts.Reset()
}
continue
}
if errors.Is(err, sys.ENOTSUPP) {
return 0, 0, fmt.Errorf("kernel doesn't support testing program type %s: %w", p.Type(), ErrNotSupported)
}
return 0, 0, fmt.Errorf("can't run test: %w", err)
}
if opts.DataOut != nil {
if int(attr.DataSizeOut) > cap(opts.DataOut) {
// Houston, we have a problem. The program created more data than we allocated,
// and the kernel wrote past the end of our buffer.
panic("kernel wrote past end of output buffer")
}
opts.DataOut = opts.DataOut[:int(attr.DataSizeOut)]
}
if len(ctxOut) != 0 {
b := bytes.NewReader(ctxOut)
if err := binary.Read(b, internal.NativeEndian, opts.ContextOut); err != nil {
return 0, 0, fmt.Errorf("failed to decode ContextOut: %v", err)
}
}
total := time.Duration(attr.Duration) * time.Nanosecond
return attr.Retval, total, nil
}
func unmarshalProgram(buf []byte) (*Program, error) {
if len(buf) != 4 {
return nil, errors.New("program id requires 4 byte value")
}
// Looking up an entry in a nested map or prog array returns an id,
// not an fd.
id := internal.NativeEndian.Uint32(buf)
return NewProgramFromID(ProgramID(id))
}
func marshalProgram(p *Program, length int) ([]byte, error) {
if length != 4 {
return nil, fmt.Errorf("can't marshal program to %d bytes", length)
}
buf := make([]byte, 4)
internal.NativeEndian.PutUint32(buf, p.fd.Uint())
return buf, nil
}
// LoadPinnedProgram loads a Program from a BPF file.
//
// Requires at least Linux 4.11.
func LoadPinnedProgram(fileName string, opts *LoadPinOptions) (*Program, error) {
fd, err := sys.ObjGet(&sys.ObjGetAttr{
Pathname: sys.NewStringPointer(fileName),
FileFlags: opts.Marshal(),
})
if err != nil {
return nil, err
}
info, err := newProgramInfoFromFd(fd)
if err != nil {
_ = fd.Close()
return nil, fmt.Errorf("info for %s: %w", fileName, err)
}
return &Program{"", fd, filepath.Base(fileName), fileName, info.Type}, nil
}
// SanitizeName replaces all invalid characters in name with replacement.
// Passing a negative value for replacement will delete characters instead
// of replacing them. Use this to automatically generate valid names for maps
// and programs at runtime.
//
// The set of allowed characters depends on the running kernel version.
// Dots are only allowed as of kernel 5.2.
func SanitizeName(name string, replacement rune) string {
return strings.Map(func(char rune) rune {
if invalidBPFObjNameChar(char) {
return replacement
}
return char
}, name)
}
// ProgramGetNextID returns the ID of the next eBPF program.
//
// Returns ErrNotExist, if there is no next eBPF program.
func ProgramGetNextID(startID ProgramID) (ProgramID, error) {
attr := &sys.ProgGetNextIdAttr{Id: uint32(startID)}
return ProgramID(attr.NextId), sys.ProgGetNextId(attr)
}
// BindMap binds map to the program and is only released once program is released.
//
// This may be used in cases where metadata should be associated with the program
// which otherwise does not contain any references to the map.
func (p *Program) BindMap(m *Map) error {
attr := &sys.ProgBindMapAttr{
ProgFd: uint32(p.FD()),
MapFd: uint32(m.FD()),
}
return sys.ProgBindMap(attr)
}
var errUnrecognizedAttachType = errors.New("unrecognized attach type")
// find an attach target type in the kernel.
//
// name, progType and attachType determine which type we need to attach to.
//
// The attach target may be in a loaded kernel module.
// In that case the returned handle will be non-nil.
// The caller is responsible for closing the handle.
//
// Returns errUnrecognizedAttachType if the combination of progType and attachType
// is not recognised.
func findTargetInKernel(name string, progType ProgramType, attachType AttachType) (*btf.Handle, btf.TypeID, error) {
type match struct {
p ProgramType
a AttachType
}
var (
typeName, featureName string
target btf.Type
)
switch (match{progType, attachType}) {
case match{LSM, AttachLSMMac}:
typeName = "bpf_lsm_" + name
featureName = name + " LSM hook"
target = (*btf.Func)(nil)
case match{Tracing, AttachTraceIter}:
typeName = "bpf_iter_" + name
featureName = name + " iterator"
target = (*btf.Func)(nil)
case match{Tracing, AttachTraceFEntry}:
typeName = name
featureName = fmt.Sprintf("fentry %s", name)
target = (*btf.Func)(nil)
case match{Tracing, AttachTraceFExit}:
typeName = name
featureName = fmt.Sprintf("fexit %s", name)
target = (*btf.Func)(nil)
case match{Tracing, AttachModifyReturn}:
typeName = name
featureName = fmt.Sprintf("fmod_ret %s", name)
target = (*btf.Func)(nil)
case match{Tracing, AttachTraceRawTp}:
typeName = fmt.Sprintf("btf_trace_%s", name)
featureName = fmt.Sprintf("raw_tp %s", name)
target = (*btf.Typedef)(nil)
default:
return nil, 0, errUnrecognizedAttachType
}
// maybeLoadKernelBTF may return external BTF if /sys/... is not available.
// Ideally we shouldn't use external BTF here, since we might try to use
// it for parsing kmod split BTF later on. That seems unlikely to work.
spec, err := maybeLoadKernelBTF(nil)
if err != nil {
return nil, 0, fmt.Errorf("load kernel spec: %w", err)
}
err = spec.TypeByName(typeName, &target)
if errors.Is(err, btf.ErrNotFound) {
module, id, err := findTargetInModule(spec, typeName, target)
if errors.Is(err, btf.ErrNotFound) {
return nil, 0, &internal.UnsupportedFeatureError{Name: featureName}
}
if err != nil {
return nil, 0, fmt.Errorf("find target for %s in modules: %w", featureName, err)
}
return module, id, nil
}
if err != nil {
return nil, 0, fmt.Errorf("find target for %s in vmlinux: %w", featureName, err)
}
id, err := spec.TypeID(target)
return nil, id, err
}
// find an attach target type in a kernel module.
//
// vmlinux must contain the kernel's types and is used to parse kmod BTF.
//
// Returns btf.ErrNotFound if the target can't be found in any module.
func findTargetInModule(vmlinux *btf.Spec, typeName string, target btf.Type) (*btf.Handle, btf.TypeID, error) {
it := new(btf.HandleIterator)
defer it.Handle.Close()
for it.Next() {
info, err := it.Handle.Info()
if err != nil {
return nil, 0, fmt.Errorf("get info for BTF ID %d: %w", it.ID, err)
}
if !info.IsModule() {
continue
}
spec, err := it.Handle.Spec(vmlinux)
if err != nil {
return nil, 0, fmt.Errorf("parse types for module %s: %w", info.Name, err)
}
err = spec.TypeByName(typeName, &target)
if errors.Is(err, btf.ErrNotFound) {
continue
}
if err != nil {
return nil, 0, fmt.Errorf("lookup type in module %s: %w", info.Name, err)
}
id, err := spec.TypeID(target)
if err != nil {
return nil, 0, fmt.Errorf("lookup type id in module %s: %w", info.Name, err)
}
return it.Take(), id, nil
}
if err := it.Err(); err != nil {
return nil, 0, fmt.Errorf("iterate modules: %w", err)
}
return nil, 0, btf.ErrNotFound
}
// find an attach target type in a program.
//
// Returns errUnrecognizedAttachType.
func findTargetInProgram(prog *Program, name string, progType ProgramType, attachType AttachType) (btf.TypeID, error) {
type match struct {
p ProgramType
a AttachType
}
var typeName string
switch (match{progType, attachType}) {
case match{Extension, AttachNone}:
typeName = name
default:
return 0, errUnrecognizedAttachType
}
btfHandle, err := prog.Handle()
if err != nil {
return 0, fmt.Errorf("load target BTF: %w", err)
}
defer btfHandle.Close()
spec, err := btfHandle.Spec(nil)
if err != nil {
return 0, err
}
var targetFunc *btf.Func
err = spec.TypeByName(typeName, &targetFunc)
if err != nil {
return 0, fmt.Errorf("find target %s: %w", typeName, err)
}
return spec.TypeID(targetFunc)
}