|
| 1 | +import numpy as np |
| 2 | + |
| 3 | +import torch |
| 4 | +import torch.nn.utils as torch_utils |
| 5 | +from torch.cuda.amp import autocast |
| 6 | +from torch.cuda.amp import GradScaler |
| 7 | + |
| 8 | +from ignite.engine import Engine |
| 9 | +from ignite.engine import Events |
| 10 | +from ignite.metrics import RunningAverage |
| 11 | +from ignite.contrib.handlers.tqdm_logger import ProgressBar |
| 12 | + |
| 13 | +from simple_nmt.utils import get_grad_norm, get_parameter_norm |
| 14 | + |
| 15 | + |
| 16 | +VERBOSE_SILENT = 0 |
| 17 | +VERBOSE_EPOCH_WISE = 1 |
| 18 | +VERBOSE_BATCH_WISE = 2 |
| 19 | + |
| 20 | + |
| 21 | +class AmpEngine(Engine): |
| 22 | + |
| 23 | + def __init__(self, func, model, crit, optimizer, lr_scheduler, config): |
| 24 | + self.model = model |
| 25 | + self.crit = crit |
| 26 | + self.optimizer = optimizer |
| 27 | + self.lr_scheduler = lr_scheduler |
| 28 | + self.config = config |
| 29 | + |
| 30 | + super().__init__(func) |
| 31 | + |
| 32 | + self.best_loss = np.inf |
| 33 | + self.scaler = GradScaler() |
| 34 | + |
| 35 | + @staticmethod |
| 36 | + #@profile |
| 37 | + def train(engine, mini_batch): |
| 38 | + # You have to reset the gradients of all model parameters |
| 39 | + # before to take another step in gradient descent. |
| 40 | + engine.model.train() |
| 41 | + if engine.state.iteration % engine.config.iteration_per_update == 1 or \ |
| 42 | + engine.config.iteration_per_update == 1: |
| 43 | + if engine.state.iteration > 1: |
| 44 | + engine.optimizer.zero_grad() |
| 45 | + |
| 46 | + device = next(engine.model.parameters()).device |
| 47 | + mini_batch.src = (mini_batch.src[0].to(device), mini_batch.src[1]) |
| 48 | + mini_batch.tgt = (mini_batch.tgt[0].to(device), mini_batch.tgt[1]) |
| 49 | + |
| 50 | + # Raw target variable has both BOS and EOS token. |
| 51 | + # The output of sequence-to-sequence does not have BOS token. |
| 52 | + # Thus, remove BOS token for reference. |
| 53 | + x, y = mini_batch.src, mini_batch.tgt[0][:, 1:] |
| 54 | + # |x| = (batch_size, length) |
| 55 | + # |y| = (batch_size, length) |
| 56 | + |
| 57 | + # autocast로 공간효율적으로 학습 실행 |
| 58 | + with autocast(not engine.config.off_autocast): |
| 59 | + # with autocast(not engine.config.off_autocast): |
| 60 | + # y_hat = (batch_size, length_m, output_size) |
| 61 | + # 입력 tgt의 경우, 맨뒤에 EOS를 토큰을 제거 |
| 62 | + y_hat = engine.model(x, mini_batch.tgt[0][:, :-1]) |
| 63 | + # |y_hat| = (batch_size, length, output_size) |
| 64 | + |
| 65 | + ''' |
| 66 | + loss값 연산을 위해 다음과 같이 텐서 모양 정리 |
| 67 | + 모든 문장의 각 단어를 순서대로 배치했다고 보면됨 |
| 68 | + 변경 전(3D): |
| 69 | + y_hat = (batch_size, length_m, output_size) |
| 70 | + y = (batch_size, length_m) |
| 71 | + 변경 후(2D): |
| 72 | + y_hat = (batch_size * length_m, output_size) |
| 73 | + y = (batch_size * length_m) |
| 74 | + ''' |
| 75 | + loss = engine.crit( |
| 76 | + y_hat.contiguous().view(-1, y_hat.size(-1)), |
| 77 | + y.contiguous().view(-1) |
| 78 | + ) |
| 79 | + ''' |
| 80 | + div(y.size(0)): loss를 구한후, batch_size만큼 나눠준 후 |
| 81 | + div(engine.config.iteration_per_update): |
| 82 | + Gradient Accumulation을 위해 미리 나눠줌 |
| 83 | + 즉, backward_target이 진짜 적용시킬 loss 값이라 보면 됨 |
| 84 | + ''' |
| 85 | + backward_target = loss.div(y.size(0)).div(engine.config.iteration_per_update) |
| 86 | + |
| 87 | + if engine.config.gpu_id >= 0 and not engine.config.off_autocast: |
| 88 | + engine.scaler.scale(backward_target).backward() |
| 89 | + else: |
| 90 | + backward_target.backward() |
| 91 | + |
| 92 | + word_count = int(mini_batch.tgt[1].sum()) |
| 93 | + p_norm = float(get_parameter_norm(engine.model.parameters())) |
| 94 | + g_norm = float(get_grad_norm(engine.model.parameters())) |
| 95 | + |
| 96 | + if engine.state.iteration % engine.config.iteration_per_update == 0 and \ |
| 97 | + engine.state.iteration > 0: |
| 98 | + ''' |
| 99 | + Gradient Clipping |
| 100 | + 시퀸스의 time_step이 길수록, gradient가 매우 커질수도 있음 |
| 101 | + g_norm이 너무 커서 많이 움직이는 걸 막기 위해 사용 |
| 102 | + - 단, Adam을 쓰면 큰 필요는 없다고 함 ㅇㅇ |
| 103 | + ''' |
| 104 | + torch_utils.clip_grad_norm_( |
| 105 | + engine.model.parameters(), |
| 106 | + engine.config.max_grad_norm, |
| 107 | + ) |
| 108 | + # Take a step of gradient descent. |
| 109 | + if engine.config.gpu_id >= 0 and not engine.config.off_autocast: |
| 110 | + # GPU를 사용할 경우, 기존 optim.step() 대신에 scaler로 step 수행 |
| 111 | + engine.scaler.step(engine.optimizer) |
| 112 | + engine.scaler.update() |
| 113 | + else: |
| 114 | + engine.optimizer.step() |
| 115 | + |
| 116 | + loss = float(loss / word_count) |
| 117 | + ppl = np.exp(loss) |
| 118 | + |
| 119 | + return { |
| 120 | + 'loss': loss, |
| 121 | + 'ppl': ppl, |
| 122 | + '|param|': p_norm if not np.isnan(p_norm) and not np.isinf(p_norm) else 0., |
| 123 | + '|g_param|': g_norm if not np.isnan(g_norm) and not np.isinf(g_norm) else 0., |
| 124 | + } |
| 125 | + |
| 126 | + @staticmethod |
| 127 | + def validate(engine, mini_batch): |
| 128 | + engine.model.eval() |
| 129 | + |
| 130 | + with torch.no_grad(): |
| 131 | + device = next(engine.model.parameters()).device |
| 132 | + mini_batch.src = (mini_batch.src[0].to(device), mini_batch.src[1]) |
| 133 | + mini_batch.tgt = (mini_batch.tgt[0].to(device), mini_batch.tgt[1]) |
| 134 | + |
| 135 | + x, y = mini_batch.src, mini_batch.tgt[0][:, 1:] |
| 136 | + # |x| = (batch_size, length) |
| 137 | + # |y| = (batch_size, length) |
| 138 | + |
| 139 | + with autocast(not engine.config.off_autocast): |
| 140 | + y_hat = engine.model(x, mini_batch.tgt[0][:, :-1]) |
| 141 | + # |y_hat| = (batch_size, n_classes) |
| 142 | + loss = engine.crit( |
| 143 | + y_hat.contiguous().view(-1, y_hat.size(-1)), |
| 144 | + y.contiguous().view(-1), |
| 145 | + ) |
| 146 | + |
| 147 | + word_count = int(mini_batch.tgt[1].sum()) |
| 148 | + loss = float(loss / word_count) |
| 149 | + ppl = np.exp(loss) |
| 150 | + |
| 151 | + return { |
| 152 | + 'loss': loss, |
| 153 | + 'ppl': ppl, |
| 154 | + } |
| 155 | + |
| 156 | + @staticmethod |
| 157 | + def attach( |
| 158 | + train_engine, validation_engine, |
| 159 | + training_metric_names = ['loss', 'ppl', '|param|', '|g_param|'], |
| 160 | + validation_metric_names = ['loss', 'ppl'], |
| 161 | + verbose=VERBOSE_BATCH_WISE, |
| 162 | + ): |
| 163 | + # Attaching would be repaeted for serveral metrics. |
| 164 | + # Thus, we can reduce the repeated codes by using this function. |
| 165 | + def attach_running_average(engine, metric_name): |
| 166 | + RunningAverage(output_transform=lambda x: x[metric_name]).attach( |
| 167 | + engine, |
| 168 | + metric_name, |
| 169 | + ) |
| 170 | + |
| 171 | + for metric_name in training_metric_names: |
| 172 | + attach_running_average(train_engine, metric_name) |
| 173 | + |
| 174 | + if verbose >= VERBOSE_BATCH_WISE: |
| 175 | + pbar = ProgressBar(bar_format=None, ncols=120) |
| 176 | + pbar.attach(train_engine, training_metric_names) |
| 177 | + |
| 178 | + if verbose >= VERBOSE_EPOCH_WISE: |
| 179 | + @train_engine.on(Events.EPOCH_COMPLETED) |
| 180 | + def print_train_logs(engine): |
| 181 | + avg_p_norm = engine.state.metrics['|param|'] |
| 182 | + avg_g_norm = engine.state.metrics['|g_param|'] |
| 183 | + avg_loss = engine.state.metrics['loss'] |
| 184 | + |
| 185 | + print('Epoch {} - |param|={:.2e} |g_param|={:.2e} loss={:.4e} ppl={:.2f}'.format( |
| 186 | + engine.state.epoch, |
| 187 | + avg_p_norm, |
| 188 | + avg_g_norm, |
| 189 | + avg_loss, |
| 190 | + np.exp(avg_loss), |
| 191 | + )) |
| 192 | + |
| 193 | + for metric_name in validation_metric_names: |
| 194 | + attach_running_average(validation_engine, metric_name) |
| 195 | + |
| 196 | + if verbose >= VERBOSE_BATCH_WISE: |
| 197 | + pbar = ProgressBar(bar_format=None, ncols=120) |
| 198 | + pbar.attach(validation_engine, validation_metric_names) |
| 199 | + |
| 200 | + if verbose >= VERBOSE_EPOCH_WISE: |
| 201 | + @validation_engine.on(Events.EPOCH_COMPLETED) |
| 202 | + def print_valid_logs(engine): |
| 203 | + avg_loss = engine.state.metrics['loss'] |
| 204 | + |
| 205 | + print('Validation - loss={:.4e} ppl={:.2f} best_loss={:.4e} best_ppl={:.2f}'.format( |
| 206 | + avg_loss, |
| 207 | + np.exp(avg_loss), |
| 208 | + engine.best_loss, |
| 209 | + np.exp(engine.best_loss), |
| 210 | + )) |
| 211 | + |
| 212 | + @staticmethod |
| 213 | + def resume_training(engine, resume_epoch): |
| 214 | + engine.state.iteration = (resume_epoch - 1) * len(engine.state.dataloader) |
| 215 | + engine.state.epoch = (resume_epoch - 1) |
| 216 | + |
| 217 | + @staticmethod |
| 218 | + def check_best(engine): |
| 219 | + loss = float(engine.state.metrics['loss']) |
| 220 | + if loss <= engine.best_loss: |
| 221 | + engine.best_loss = loss |
| 222 | + |
| 223 | + @staticmethod |
| 224 | + def save_model(engine, train_engine, config, src_vocab, tgt_vocab): |
| 225 | + avg_train_loss = train_engine.state.metrics['loss'] |
| 226 | + avg_valid_loss = engine.state.metrics['loss'] |
| 227 | + |
| 228 | + # Set a filename for model of last epoch. |
| 229 | + # We need to put every information to filename, as much as possible. |
| 230 | + model_fn = config.model_fn.split('.') |
| 231 | + |
| 232 | + model_fn = model_fn[:-1] + ['%02d' % train_engine.state.epoch, |
| 233 | + '%.2f-%.2f' % (avg_train_loss, |
| 234 | + np.exp(avg_train_loss) |
| 235 | + ), |
| 236 | + '%.2f-%.2f' % (avg_valid_loss, |
| 237 | + np.exp(avg_valid_loss) |
| 238 | + ) |
| 239 | + ] + [model_fn[-1]] |
| 240 | + |
| 241 | + model_fn = '.'.join(model_fn) |
| 242 | + |
| 243 | + # Unlike other tasks, we need to save current model, not best model. |
| 244 | + torch.save( |
| 245 | + { |
| 246 | + 'model': engine.model.state_dict(), |
| 247 | + 'opt': train_engine.optimizer.state_dict(), |
| 248 | + 'config': config, |
| 249 | + 'src_vocab': src_vocab, |
| 250 | + 'tgt_vocab': tgt_vocab, |
| 251 | + }, model_fn |
| 252 | + ) |
0 commit comments