-
Notifications
You must be signed in to change notification settings - Fork 9
/
myevaluate.py
101 lines (85 loc) · 4.03 KB
/
myevaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import numpy as np
import os
import torch
import argparse
from network import IHN
from utils import *
import datasets_4cor_img as datasets
import scipy.io as io
import torchvision
import numpy as np
import time
setup_seed(2022)
def evaluate_SNet(model, val_dataset, batch_size=0, args = None):
assert batch_size > 0, "batchsize > 0"
total_mace = torch.empty(0)
timeall=[]
total_mace_dict={}
for i_batch, data_blob in enumerate(val_dataset):
img1, img2, flow_gt, H = [x.to(model.device) for x in data_blob]
if i_batch==0:
if not os.path.exists('watch'):
os.makedirs('watch')
save_img(torchvision.utils.make_grid((img1)),
'./watch/' + "b1_epoch_" + str(i_batch).zfill(5) + "_finaleval_" + '.bmp')
save_img(torchvision.utils.make_grid((img2)),
'./watch/' + "b2_epoch_" + str(i_batch).zfill(5) + "_finaleval_" + '.bmp')
img1 = img1.to(model.device)
img2 = img2.to(model.device)
time_start = time.time()
four_pred = model(img1, img2, iters_lev0=args.iters_lev0, iters_lev1=args.iters_lev1, test_mode=True)
time_end = time.time()
timeall.append(time_end-time_start)
print(time_end-time_start)
flow_4cor = torch.zeros((four_pred.shape[0], 2, 2, 2))
flow_4cor[:, :, 0, 0] = flow_gt[:, :, 0, 0]
flow_4cor[:, :, 0, 1] = flow_gt[:, :, 0, -1]
flow_4cor[:, :, 1, 0] = flow_gt[:, :, -1, 0]
flow_4cor[:, :, 1, 1] = flow_gt[:, :, -1, -1]
mace_ = (flow_4cor - four_pred.cpu().detach())**2
mace_ = ((mace_[:,0,:,:] + mace_[:,1,:,:])**0.5)
mace_vec = torch.mean(torch.mean(mace_, dim=1), dim=1)
total_mace = torch.cat([total_mace,mace_vec], dim=0)
final_mace = torch.mean(total_mace).item()
print(mace_.mean())
print("MACE Metric: ", final_mace)
if not os.path.exists("res_mat"):
os.makedirs("res_mat")
if not os.path.exists("res_npy"):
os.makedirs("res_npy")
print(np.mean(np.array(timeall[1:-1])))
io.savemat('res_mat/' + args.savemat, {'matrix': total_mace.numpy()})
np.save('res_npy/' + args.savedict, total_mace_dict)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--model', default='results/IHN/IHN.pth',help="restore checkpoint")
parser.add_argument('--iters_lev0', type=int, default=6)
parser.add_argument('--iters_lev1', type=int, default=3)
parser.add_argument('--mixed_precision', default=False, action='store_true',
help='use mixed precision')
parser.add_argument('--dropout', type=float, default=0.0)
parser.add_argument('--gpuid', type=int, nargs='+', default=[0])
parser.add_argument('--savemat', type=str, default='resmat')
parser.add_argument('--savedict', type=str, default='resnpy')
parser.add_argument('--dataset', type=str, default='mscoco', help='dataset')
parser.add_argument('--lev0', default=False, action='store_true',
help='warp no')
parser.add_argument('--lev1', default=False, action='store_true',
help='warp once')
parser.add_argument('--weight', default=False, action='store_true',
help='weight')
parser.add_argument('--model_name_lev0', default='', help='specify model0 name')
parser.add_argument('--model_name_lev1', default='', help='specify model0 name')
args = parser.parse_args()
device = torch.device('cuda:'+ str(args.gpuid[0]))
model = IHN(args)
model_med = torch.load(args.model, map_location='cuda:1')
model.load_state_dict(model_med)
model.to(device)
model.eval()
batchsz = 1
if args.dataset=='ggearth' or args.dataset=='ggmap':
import dataset as datasets
args.batch_size = batchsz
val_dataset = datasets.fetch_dataloader(args, split='val')
evaluate_SNet(model, val_dataset, batch_size=batchsz, args=args)