-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFunctions.py
874 lines (775 loc) · 31.1 KB
/
Functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
import numpy as np
np.random.seed(0)
import math
import matplotlib.pyplot as plt
import pandas as pd
from sys import platform
import CurvesGenerator.cubic_spline as cs
from multipledispatch import dispatch
import json
EPSILON = 1e-6
class Arrow:
def __init__(self, x, y, theta, L, c, ax=None):
angle = np.deg2rad(30)
d = 0.4 * L
w = 2
x_start = x
y_start = y
x_end = x + L * np.cos(theta)
y_end = y + L * np.sin(theta)
theta_hat_L = theta + math.pi - angle
theta_hat_R = theta + math.pi + angle
x_hat_start = x_end
x_hat_end_L = x_hat_start + d * np.cos(theta_hat_L)
x_hat_end_R = x_hat_start + d * np.cos(theta_hat_R)
y_hat_start = y_end
y_hat_end_L = y_hat_start + d * np.sin(theta_hat_L)
y_hat_end_R = y_hat_start + d * np.sin(theta_hat_R)
self.arrow_line_handle = []
if ax == None:
self.arrow_line_handle.append(plt.plot([x_start, x_end], [y_start, y_end], color=c, linewidth=w))
self.arrow_line_handle.append(plt.plot([x_hat_start, x_hat_end_L],
[y_hat_start, y_hat_end_L], color=c, linewidth=w))
self.arrow_line_handle.append(plt.plot([x_hat_start, x_hat_end_R],
[y_hat_start, y_hat_end_R], color=c, linewidth=w))
else:
self.arrow_line_handle.append(ax.plot([x_start, x_end], [y_start, y_end], color=c, linewidth=w))
self.arrow_line_handle.append(ax.plot([x_hat_start, x_hat_end_L],
[y_hat_start, y_hat_end_L], color=c, linewidth=w))
self.arrow_line_handle.append(ax.plot([x_hat_start, x_hat_end_R],
[y_hat_start, y_hat_end_R], color=c, linewidth=w))
def draw_car(x, y, yaw, steer, car_params, color='black', ax=None):
CGB = car_params['RB'] + car_params['lr'] # distance from cg to back edge
CGF = car_params['RF'] - car_params['lr'] # distance from cg to front edge
lf = car_params['WB'] - car_params['lr']
# rectangle with cg at [0,0]
# vehicle config
# RF = 3.3 # [m] distance from rear to vehicle front end of vehicle
# RB = 0.8 # [m] distance from rear to vehicle back end of vehicle
# W = 2.4 # [m] width of vehicle
# WD = 0.7 * W # [m] distance between left-right wheels
# WB = 2.5 # [m] Wheel base this is L
# TR = 0.44 # [m] Tyre radius
# TW = 0.7 # [m] Tyre width
car = np.array([[-CGB, -CGB, CGF, CGF, -CGB],
[car_params['W'] / 2, -car_params['W'] / 2, -car_params['W'] / 2, car_params['W'] / 2, car_params['W'] / 2]])
wheel = np.array([[-car_params['TR'], -car_params['TR'], car_params['TR'], car_params['TR'], -car_params['TR']],
[car_params['TW'] / 4, -car_params['TW'] / 4, -car_params['TW'] / 4, car_params['TW'] / 4, car_params['TW'] / 4]])
rlWheel = wheel.copy()
rrWheel = wheel.copy()
frWheel = wheel.copy()
flWheel = wheel.copy()
Rot1 = np.array([[math.cos(yaw), -math.sin(yaw)],
[math.sin(yaw), math.cos(yaw)]])
Rot2 = np.array([[math.cos(steer), -math.sin(steer)],
[math.sin(steer), math.cos(steer)]])
frWheel = np.dot(Rot2, frWheel)
flWheel = np.dot(Rot2, flWheel)
frWheel += np.array([[lf], [-car_params['WD'] / 2]])
flWheel += np.array([[lf], [car_params['WD'] / 2]])
rrWheel += np.array([[-car_params['lr']], [-car_params['WD'] / 2]])
rlWheel += np.array([[-car_params['lr']], [car_params['WD'] / 2]])
frWheel = np.dot(Rot1, frWheel)
flWheel = np.dot(Rot1, flWheel)
rrWheel = np.dot(Rot1, rrWheel)
rlWheel = np.dot(Rot1, rlWheel)
car = np.dot(Rot1, car)
frWheel += np.array([[x], [y]])
flWheel += np.array([[x], [y]])
rrWheel += np.array([[x], [y]])
rlWheel += np.array([[x], [y]])
car += np.array([[x], [y]])
vehicle_line_handle = []
if ax == None:
vehicle_line_handle.append(plt.plot(car[0, :], car[1, :], color))
vehicle_line_handle.append(plt.plot(frWheel[0, :], frWheel[1, :], color))
vehicle_line_handle.append(plt.plot(rrWheel[0, :], rrWheel[1, :], color))
vehicle_line_handle.append(plt.plot(flWheel[0, :], flWheel[1, :], color))
vehicle_line_handle.append(plt.plot(rlWheel[0, :], rlWheel[1, :], color))
arrow_instance = Arrow(x, y, yaw, car_params['WB'] * 0.6, color)
vehicle_line_handle.extend(arrow_instance.arrow_line_handle)
else:
vehicle_line_handle.append(ax.plot(car[0, :], car[1, :], color))
vehicle_line_handle.append(ax.plot(frWheel[0, :], frWheel[1, :], color))
vehicle_line_handle.append(ax.plot(rrWheel[0, :], rrWheel[1, :], color))
vehicle_line_handle.append(ax.plot(flWheel[0, :], flWheel[1, :], color))
vehicle_line_handle.append(ax.plot(rlWheel[0, :], rlWheel[1, :], color))
arrow_instance = Arrow(x, y, yaw, car_params['WB'] * 0.6, color, ax=ax)
vehicle_line_handle.extend(arrow_instance.arrow_line_handle)
return vehicle_line_handle
def fold_angles(u):
"""angles are folded to +-pi"""
u = np.squeeze(u)
if len(u.shape) == 0:
u = u.reshape([1, 1])
NumOfSamples = u.shape[0]
y = np.zeros(u.shape)
for i in range(NumOfSamples):
if u[i] >= 0:
y[i] = np.mod(u[i], 2 * np.pi)
if y[i] > np.pi:
y[i] = y[i] - 2 * np.pi
else:
y[i] = np.mod(u[i], -2 * np.pi)
if y[i] < -np.pi:
y[i] = y[i] + 2 * np.pi
return y.squeeze()
def calc_desired_path(scenario, ds=0.1, traj_noise=None, plot_results=False):
# generate path
if scenario == 'sin':
x_range = 250.0
wave_length = 50.0
f = 2 * np.pi / wave_length
A0 = 3.0
Ae = 250.0
traj_samples_x = np.arange(0, x_range, 0.5)
traj_samples_y = [(A0 + (Ae - A0) / x_range * ix) * math.sin(f * ix) for ix in traj_samples_x]
traj_spline_x, traj_spline_y, traj_spline_psi, traj_spline_cur, _ = cs.calc_spline_course(traj_samples_x, traj_samples_y, ds=ds)
elif scenario == 'original_from_repo':
ax = [0.0, 15.0, 30.0, 50.0, 60.0]
ay = [0.0, 40.0, 15.0, 30.0, 0.0]
traj_spline_x, traj_spline_y, traj_spline_psi, traj_spline_cur, _ = cs.calc_spline_course(ax, ay, ds=ds)
elif scenario == 'straight_line':
x_range = 25.0
initial_error = 1.0
traj_samples_x = np.arange(0, x_range, 0.5)
traj_samples_y = initial_error * np.ones(traj_samples_x.shape)
traj_spline_x, traj_spline_y, traj_spline_psi, traj_spline_cur, _ = cs.calc_spline_course(traj_samples_x, traj_samples_y, ds=ds)
elif scenario == 'shiba':
if platform == 'linux':
data = pd.read_csv("data/backed_data_files/shiba_traj_splines.csv")
elif platform == 'win32':
data = pd.read_csv("data\\backed_data_files\\shiba_traj_splines.csv")
else:
raise 'unhandled platform'
traj_spline_x = np.array(data.x)
traj_spline_y = np.array(data.y)
traj_spline_psi = np.array(data.psi)
traj_spline_cur = np.array(data.psi)
elif scenario == 'turn':
direction = 'right'
if direction == 'right':
SF = - 1.0
else:
SF = 1.0
l1 = 10.0
l2 = 30.0
dl = 0.5
traj_samples_x = np.arange(0, l1, dl)
traj_samples_y = np.zeros([traj_samples_x.shape[0]])
traj_samples_x = np.hstack([traj_samples_x, np.ones([int(l2/dl)]) * l1])
traj_samples_y = np.hstack([traj_samples_y, SF * np.arange(0, l2, dl)])
traj_spline_x, traj_spline_y, traj_spline_psi, traj_spline_cur, _ = cs.calc_spline_course(traj_samples_x, traj_samples_y, ds=ds)
elif scenario == 'random_curvature':
s = np.arange(0, 250, ds)
k = 1.0 * (np.random.rand(s.shape[0])-0.5)#.cumsum()
traj_spline_x, traj_spline_y = calculate_curve_from_curvature(s, k, plot_res=False)
dx = np.diff(traj_spline_x)
dy = np.diff(traj_spline_y)
traj_spline_psi = np.arctan2(dy, dx)
traj_spline_cur = k
elif scenario == 'eight':
num_points = 1000
# Define the parameter s (curve length)
s = np.linspace(0, 2*np.pi, num_points)
# Define the parametric equations for the lemniscate (figure-eight curve)
x = np.sin(s)
y = np.sin(s) * np.cos(s)
x_range = 100
y_range = 50
x = x_range / 2 * x
y = y_range * y
# s, k, psi = calc_path_features(x,y,plot_results=True)
traj_spline_x, traj_spline_y, traj_spline_psi, traj_spline_cur, traj_spline_s = cs.calc_spline_course(x, y, ds=0.1)
elif scenario == 'ellipse':
def ellipse_points(a, b, num_points=100):
# Generate theta values
theta = np.linspace(0, 2*np.pi, num_points)
# Compute x and y
x = a * np.cos(theta)
y = b * np.sin(theta)
return x, y
direction = 'right' # 'right', 'left'
if direction == 'right':
SF = 1.0
else:
SF = - 1.0
rx = 25 # Major axis
ry = 10 # Minor axis
x, y = ellipse_points(rx, ry)
y += ry
traj_spline_x, traj_spline_y, traj_spline_psi, traj_spline_cur, traj_spline_s = cs.calc_spline_course(x, SF * y, ds=0.1)
else:
raise 'invalid scenario'
ds = [0.0]
for i in range(1, len(traj_spline_x) ):
dx = traj_spline_x[i] - traj_spline_x[i-1]
dy = traj_spline_y[i] - traj_spline_y[i-1]
ds.append(np.linalg.norm([dx, dy]))
# temp = [0.0]
# temp.extend(ds)
# ds = np.array(temp)
s = np.cumsum(ds)
traj_spline_psi = continuous_angle(traj_spline_psi, 'rad')
if traj_noise is not None:
metric_noise = np.random.uniform(low=-traj_noise[0], high=traj_noise[0],
size=np.array(traj_spline_x).size -1)
heading_noise = np.random.uniform(low=-traj_noise[1], high=traj_noise[1],
size=np.array(traj_spline_x).size-1)
diff_traj_x = np.diff(traj_spline_x)
diff_traj_y = np.diff(traj_spline_y)
diff_traj_xy = np.vstack([diff_traj_x, diff_traj_y]).T
norm_traj = np.linalg.norm(diff_traj_xy, axis=1)
scrambled_diff_x = ((norm_traj + metric_noise) *
np.cos(np.array(traj_spline_psi)[:-1] + heading_noise))
scrambled_diff_y = ((norm_traj + metric_noise) *
np.sin(np.array(traj_spline_psi)[:-1] + heading_noise))
scrambled_diff_xy = np.vstack([scrambled_diff_x, scrambled_diff_y]).T
added_noise = scrambled_diff_xy - diff_traj_xy
traj_spline_x[:-1] += added_noise[:,0]
traj_spline_y[:-1] += added_noise[:,1]
traj_spline_psi[:-1] += heading_noise
if plot_results:
plt.figure()
plt.subplot(1,2,1)
plt.plot(traj_spline_x, traj_spline_y)
plt.grid(True), plt.xlabel('[m]'), plt.ylabel('[m]')#, plt.axis('equal')
plt.subplot(2,2,2)
plt.plot(s, traj_spline_cur)
plt.grid(True), plt.ylabel('curvature [1/m]')
plt.subplot(2, 2, 4)
plt.plot(s, traj_spline_psi)
plt.grid(True), plt.xlabel('curve length [m]'), plt.ylabel('heading [rad]')
plt.show()
return traj_spline_x, traj_spline_y, traj_spline_psi, traj_spline_cur, s
def save_csv(dic, path, print_message=False):
df = pd.DataFrame(data=dic)
df.to_csv(path,index=False)
if print_message:
print('results saved to ' + path)
def epsilon_limit(u):
sign = np.sign(u)
if abs(sign) < 1.0:
sign = 1.0
y = sign * max(abs(u), EPSILON)
return y
def allign_time_vectors(time_vectors):
"""
export a common time vector with the smallest dt, maximal t0, minimal tend
time_vectors: list where each element is a np.array 1D vector
"""
n = len(time_vectors)
dt_list = []
t0_list = []
tend_list = []
for time_vector in time_vectors:
dt_list.append(np.mean(np.diff(time_vector)))
t0_list.append(time_vector[0])
tend_list.append(time_vector[-1])
dt = min(dt_list)
t0 = max(t0_list)
tend = min(tend_list)
t = np.arange(start=t0,stop=tend,step=dt)
return t
def Radius(Lat):
R0 = 6.378388e6
Rp = 6.356912e6
e = np.sqrt(1 - (Rp / R0) ** 2)
RN = R0 / np.sqrt(1 - e ** 2 * np.sin(Lat) ** 2)
RM = R0 * (1 - e ** 2) / (1 - e ** 2 * np.sin(Lat) ** 2) ** (3 / 2)
Re = R0 * (1 - e * np.sin(Lat) ** 2)
return RN, RM, Re
def LLA2ECEF(lat, lon, alt):
# WGS84 ellipsoid constants:
a = 6378137
e = 8.1819190842622e-2
# intermediate calculation
# (prime vertical radius of curvature)
N = a / np.sqrt(1 - np.power(e, 2) * np.power(np.sin(lat * np.pi / 180), 2))
# results:
x = (N + alt) * np.cos(lat * np.pi / 180) * np.cos(lon * np.pi / 180)
y = (N + alt) * np.cos(lat * np.pi / 180) * np.sin(lon * np.pi / 180)
z = ((1 - np.power(e, 2)) * N + alt) * np.sin(lat * np.pi / 180)
return x, y, z
def Mphi(Phi):
Mphi = np.array(
[[1, 0, 0],
[0, np.cos(Phi), np.sin(Phi)],
[0, -np.sin(Phi), np.cos(Phi)]])
return Mphi
def Mtheta(Theta):
Mtheta = np.array(
[[np.cos(Theta), 0, -np.sin(Theta)],
[0, 1, 0],
[np.sin(Theta), 0, np.cos(Theta)]])
return Mtheta
def Mpsi(Psi):
Mpsi = np.array(
[[np.cos(Psi), np.sin(Psi), 0],
[-np.sin(Psi), np.cos(Psi), 0],
[0, 0, 1]])
return Mpsi
def DCM_Ned2ECEF(Long, Lat):
M12 = Mtheta(Lat * np.pi / 180 + np.pi / 2)
M01 = Mpsi(-Long * np.pi / 180)
DCM = np.dot(M01, M12)
return DCM
def DCM_ECEF2NED(Long, Lat):
M10 = Mpsi(Long * np.pi / 180)
M21 = Mtheta(-Lat * np.pi / 180 - np.pi / 2)
DCM = np.dot(M21, M10)
return DCM
def ECEF2LLA(x, y, z):
# WGS84 ellipsoid constants:
a = float(6378137)
e = 8.1819190842622e-2
# calculations:
b = np.sqrt(np.power(a, 2) * (1 - np.power(e, 2)))
ep = np.sqrt((np.power(a, 2) - np.power(b, 2)) / np.power(b, 2))
p = np.sqrt(np.power(x, 2) + np.power(y, 2))
th = np.arctan2(a * z, b * p)
lon = np.arctan2(y, x)
lat = np.arctan2(z + np.power(ep, 2) * b * np.power(np.sin(th), 3),
p - np.power(e, 2) * a * np.power(np.cos(th), 3))
N = a / np.sqrt(1 - np.power(e, 2) * np.power(np.sin(lat), 2))
alt = p / np.cos(lat) - N
# return lon in range [0,360)
lon = np.mod(lon, 2 * np.pi)
# correct for numerical instability in altitude near exact poles:
# (after this correction, error is about 2 millimeters, which is about
# the same as the numerical precision of the overall function)
if abs(x) < 1 and abs(y) < 1:
alt = abs(z) - b
return lat, lon, alt
def LocalNav2Geo(p0, L, Psi):
"""Find LLA location from azimuth distance"""
# 1. calc p0 in ECEF
[Xecef, Yecef, Zecef] = LLA2ECEF(p0[0], p0[1], p0[2])
P0_ECEF = np.array([Xecef, Yecef, Zecef])
# 2. calculate DCM NED->ECEF at p0
R_ECEF_NED = DCM_Ned2ECEF(p0[0], p0[1])
# 3.calc p1 in LLLN
p1_NED = L * np.array([np.cos(Psi), np.sin(Psi), 0])
# 4. calc 2nd point in ECEF
p1_ECEF = np.dot(R_ECEF_NED, p1_NED) + P0_ECEF
# 5. convert ECEF 2 LLA
[Lat, Long, Alt] = ECEF2LLA(p1_ECEF[0], p1_ECEF[1], p1_ECEF[2])
p1_LLA = np.array([Lat * 180 / np.pi, Long * 180 / np.pi, Alt])
return p1_LLA
def LLA2NED(lat, long, alt):
x_ECEF, y_ECEF, z_ECEF = LLA2ECEF(lat, long, alt)
ECEF_arr = np.vstack([x_ECEF, y_ECEF, z_ECEF]).T
DCM = DCM_ECEF2NED(Long=long[0], Lat=lat[0])
n_e_d = np.dot(DCM, ECEF_arr.T)
Pn = n_e_d[0, :].squeeze() - n_e_d[0, 0]
Pe = n_e_d[1, :].squeeze() - n_e_d[1, 0]
Pd = n_e_d[2, :].squeeze() - n_e_d[2, 0]
return Pn,Pe,Pd
def continuous_angle(U, units='rad'):
n = len(U)
Y = U.copy()
Counter = 0
if units == 'deg':
Cycle = 360
elif units == 'rad':
Cycle = 2 * np.pi
else:
print("ContinuousAngle:wrong units")
for i in range(1, n):
# if abs(U[i] - U[i - 1]) > Cycle / 10:
# print(U[i] - U[i - 1])
if (U[i] - U[i - 1]) > Cycle / 2:
Counter = Counter - 1
elif (U[i] - U[i - 1]) < - Cycle / 2:
Counter = Counter + 1
Y[i] = U[i] + Cycle * Counter
return Y
def affine_transformation_matrix_2D(x,y,psi):
"""
calculate an affine transformation matrix which projects 2D points in CS1
in to CS2.
x,y are the coordinates of the origin of CS2 in CS1
psi is the angle of Cs1 relative to CS2
Test function with this script:
CS2_origin_x = 2
CS2_origin_y = 1
p = np.array([3, 4]).reshape([2, 1])
psi = np.pi/2
T = affine_transformation_matrix_2D(x=CS2_origin_x, y=CS2_origin_y, psi=psi)
p_homo = np.vstack([p, 1])
p_in_CS2_homo = T.dot(p_homo)
p_in_CS2 = p_in_CS2_homo[:2]
print(p_in_CS2)
"""
R = Mpsi(psi)[:2, :2]
O2 = np.array([x, y]).reshape(2,1)
third_row = np.array([0, 0, 1]).reshape([1, 3])
T = np.concatenate((R, -R.dot(O2)), axis=1)
T = np.concatenate((T, third_row), axis=0)
return T
def inv_affine_transformation_matrix_2D(T : np.array):
"""
Test function with script:
CS2_origin_x = 2
CS2_origin_y = 1
p = np.array([3, 4]).reshape([2, 1])
psi = np.pi/2
T = affine_transformation_matrix_2D(x=CS2_origin_x, y=CS2_origin_y, psi=psi)
T_inv = inv_affine_transformation_matrix_2D(T)
print(T_inv)
print("check that you get unitary matrix")
print(T.dot(T_inv))
"""
R = T[:2, :2]
O1 = T[:2, 2].reshape([2, 1])
T_inv = np.concatenate((R.T, -R.T.dot(O1)), axis=1)
T_inv = np.concatenate((T_inv, np.array([0, 0, 1]).reshape([1, 3])), axis=0)
return T_inv
@dispatch(float, float, float, np.ndarray)
def project_points_2D(x, y, psi, points: np.array):
"""
project multiple points in CS1 on a CS2
x,y are the coordinates of the origin of CS2 in CS1
psi is the angle of CS1 relative to CS2
points is an nX2 array.
test with script:
from copy import copy
px = np.linspace(0, 10, num=11).reshape([11, 1])
py = copy(px)
plt.plot(px, py, label="points")
points_1 = np.concatenate((px, py), axis=1)
CS2_origin_x = 1
CS2_origin_y = 1
psi = 30 * np.pi / 180
points_2, T = project_points_2D(CS2_origin_x, CS2_origin_y, psi, points_1)
plt.plot(points_2[:, 0], points_2[:, 1], label="points projected")
plt.grid(True), plt.legend(), plt.gca().axis('equal')
plt.show()
"""
n = points.shape[0]
T = affine_transformation_matrix_2D(x=x, y=y, psi=psi)
points_homo = np.concatenate((points.T, np.ones(n).reshape([1, n])))
points_projected_homo = T.dot(points_homo)
points_projected = points_projected_homo[:2]
return points_projected.T, T
@dispatch(np.ndarray, np.ndarray)
def project_points_2D(T12, points: np.array):
"""
project multiple points in CS1 on a CS2
T12 is the affine transformation matrix from CS1 to CS2
points is an nX2 array.
Test function with this script:
CS2_origin_x = 2
CS2_origin_y = 1
p = np.array([3, 4]).reshape([2, 1])
psi = np.pi/2
T = affine_transformation_matrix_2D(x=CS2_origin_x, y=CS2_origin_y, psi=psi)
p_in_CS2 = project_points_2D(T, p)
print(p_in_CS2)
"""
assert len(points.shape) <= 2
assert len(points.shape) > 0
if len(points.shape) == 1:
points = np.expand_dims(points, axis=0)
n = points.shape[0]
points_homo = np.concatenate((points.T, np.ones(n).reshape([1, n])))
points_projected_homo = T12.dot(points_homo)
points_projected = points_projected_homo[:2]
return points_projected.T
def project_point_on_path(point, path, exclude_points_behind_vehicle=False, psi=None):
if exclude_points_behind_vehicle:
assert psi is not None
# desired path observation in point frame
path_ego_frame, trans_nav2ego = project_points_2D(point[0], point[1],psi,
path)
idx = np.argwhere(path_ego_frame[:,0] > 0).squeeze()
idx_in_idx_vec = np.argmin(np.linalg.norm(path_ego_frame[idx], axis=1))
# delete plot
# plt.scatter(path_ego_frame[:,0], path_ego_frame[:,1])
# plt.grid(True)
# plt.show()
# print("path_ego_frame = \n")
# print(path_ego_frame)
# print("path_ego_frame[idx] = \n")
# print(path_ego_frame[idx])
# print("path_ego_frame[idx[idx_in_idx_vec]] = \n")
# print(path_ego_frame[idx[idx_in_idx_vec]])
# print("distance to closets point = " + str(np.linalg.norm(path_ego_frame[idx[idx_in_idx_vec]])))
# print("idx[idx_in_idx_vec] = " + str(idx[idx_in_idx_vec]))
return int(idx[idx_in_idx_vec])
# dx = [point[0] - x for x in path[:, 0]]
# dy = [point[1] - y for y in path[:, 1]]
# return int(np.argmin(np.hypot(dx, dy)))
return np.argmin(np.linalg.norm(path - np.array(point), axis=1))
def nav_est_2_nav_affine_transformation_2D(x_est, y_est, psi_est,\
x, y, psi):
"""
calculate estimated Nav to GT Nav affine transformation matrix
"""
Ten = affine_transformation_matrix_2D(x, y, psi)
Tne = inv_affine_transformation_matrix_2D(Ten)
Ten_hat = affine_transformation_matrix_2D(x_est, y_est, psi_est)
Tnn_hat = np.matmul(Tne, Ten_hat)
return Tnn_hat
def calculate_curve_from_curvature(curve_length, curvature, plot_res=False):
# Calculate the tangent angle by integrating the curvature
theta = np.cumsum(curvature) * (curve_length[1]-curve_length[0]) # approximate integral
# Calculate the x and y coordinates of the curve points
x = np.cumsum(np.cos(theta)) * (curve_length[1]-curve_length[0]) # approximate integral
y = np.cumsum(np.sin(theta)) * (curve_length[1]-curve_length[0]) # approximate integral
if plot_res:
plt.figure(figsize=(6,6))
plt.plot(x, y)
plt.xlabel('X')
plt.ylabel('Y')
plt.title('2D line from curve length and curvature')
plt.axis('equal')
plt.grid(True)
plt.show()
"""
test function with:
s = np.linspace(0, 10, 100) # replace with your actual data
k = np.ones(s.shape) * 0.5 # replace with your actual data
k[50:] = - 0.25
calculate_curve_from_curvature(s, k, plot_res=True)
"""
return x, y
def calc_path_features(x, y, plot_results=False):
# Calculate the derivative of y with respect to x
dx = np.gradient(x)
dy = np.gradient(y)
# Calculate the second derivative of y with respect to x
d2x = np.gradient(dx)
d2y = np.gradient(dy)
# Calculate the curvature
k = (dx * d2y - dy * d2x) / (dx ** 2 + dy ** 2)**1.5
# Calculate the cumulative arc length
ds = np.sqrt(dx**2 + dy**2)
s = np.cumsum(ds)
psi = np.arctan2(dy, dx)
psi = continuous_angle(psi, 'rad')
# Now s is your curve length and k is your curvature
if plot_results:
plt.figure()
plt.subplot(1, 2, 1)
plt.scatter(x, y)
plt.grid(True), plt.xlabel('y [m]'), plt.ylabel('x [m]')
plt.axis('equal')
plt.subplot(2,2,2)
plt.plot(s, k)
plt.grid(True)
plt.ylabel('curvature [1/m]')
plt.subplot(2,2,4)
plt.plot(s, psi)
plt.plot([s[0], s[-1]], np.array([1,1]) * np.mean(psi), linestyle='--', color='k')
plt.xlabel('s'), plt.ylabel('heading [rad]')
plt.grid(True)
# plt.show()
return s, k, psi
def regulate_random_signal(signal, set_point, gain, plot_res=False):
u = []
regulator = 0
for i, si in enumerate(signal):
e = set_point - (si + regulator)
regulator += e * gain
u.append(regulator)
if plot_res:
plt.figure()
plt.plot(signal)
plt.plot(signal + u)
plt.grid(True)
plt.show()
return np.array(u) + signal
def RMS(u):
return np.sqrt(np.mean(u ** 2))
def FoldAngles(u):
"""angles are folded to +-pi"""
u = np.squeeze(u)
if len(u.shape) == 0:
u = u.reshape([1, 1])
NumOfSamples = u.shape[0]
y = np.zeros(u.shape)
for i in range(NumOfSamples):
if u[i] >= 0:
y[i] = np.mod(u[i], 2 * np.pi)
if y[i] > np.pi:
y[i] = y[i] - 2 * np.pi
else:
y[i] = np.mod(u[i], -2 * np.pi)
if y[i] < -np.pi:
y[i] = y[i] + 2 * np.pi
return y.squeeze()
@dispatch(np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray)
def PlotEulerAngles(Phi, PhiHat, Theta, ThetaHat, Psi, PsiHat, t_ref, t_hat=None):
"insert angles in radians"
if t_hat is None:
assert (len(list(Phi)) == len(list(PhiHat)) and
len(list(Theta)) == len(list(ThetaHat)) and
len(list(Psi)) == len(list(PsiHat)))
else:
print("interpolating for visualization \n")
# segment reference to be contained in estimation time
t_hat = np.array(t_hat)
t_ref = np.array(t_ref)
t_ref_start_idx = np.argmin(np.abs(t_ref - t_hat[0])) + 1
t_ref_stop_idx = np.argmin(np.abs(t_ref - t_hat[-1])) - 1
t_ref = t_ref[t_ref_start_idx:t_ref_stop_idx]
Phi = np.array(Phi[t_ref_start_idx:t_ref_stop_idx])
Theta = np.array(Theta[t_ref_start_idx:t_ref_stop_idx])
Psi = np.array(Psi[t_ref_start_idx:t_ref_stop_idx])
# interpolate estimation to reference time
PhiHat = np.interp(x=t_ref, xp=t_hat, fp=PhiHat)
ThetaHat = np.interp(x=t_ref, xp=t_hat, fp=ThetaHat)
PsiHat = np.interp(x=t_ref, xp=t_hat, fp=PsiHat)
plt.close('Euler Angles Plot')
fig = plt.figure('Euler Angles Plot')
Ax1 = fig.add_subplot(321)
t_hat -= t_hat[0]
Ax1.plot(t_ref, Phi * 180 / np.pi, color='blue', linewidth=1)
Ax1.plot(t_ref, PhiHat * 180 / np.pi, color='red', linewidth=1)
Ax1.set(title=r"$\phi$", xlabel="", ylabel="[deg]"), Ax1.grid(True)
plt.legend(['ref', 'est'])
ePhi = Phi - PhiHat
Ax2 = fig.add_subplot(322, sharex=Ax1)
Ax2.plot(t_ref, ePhi * 180 / np.pi, color='black', linewidth=1)
Ax2.set(title=r"$e_{\Phi}$, RMS = " + str("%.2f" % (RMS(ePhi) * 180 / np.pi)), xlabel="", ylabel="[deg]"), Ax2.grid(True)
Ax3 = fig.add_subplot(323, sharex=Ax1)
Ax3.plot(t_ref, Theta * 180 / np.pi, color='blue', linewidth=1)
Ax3.plot(t_ref, ThetaHat * 180 / np.pi, color='red', linewidth=1)
Ax3.set(title=r"$\theta$", xlabel="", ylabel="[deg]"), Ax3.grid(True)
eTheta = Theta - ThetaHat
Ax4 = fig.add_subplot(324, sharex=Ax1)
Ax4.plot(t_ref, eTheta * 180 / np.pi, color='black', linewidth=1)
Ax4.set(title=r"$e_{\theta}$, RMS = " + str("%.2f" % (RMS(eTheta) * 180 / np.pi)), xlabel="", ylabel="[deg]"), Ax4.grid(True)
Ax5 = fig.add_subplot(325, sharex=Ax1)
Ax5.plot(t_ref, Psi * 180 / np.pi, color='blue', linewidth=1)
Ax5.plot(t_ref, PsiHat * 180 / np.pi, color='red', linewidth=1)
Ax5.set(title=r"$\psi$", xlabel="time [sec]", ylabel="[deg]"), Ax5.grid(True)
ePsi = FoldAngles(Psi - PsiHat)
Ax6 = fig.add_subplot(326, sharex=Ax1)
Ax6.plot(t_ref, ePsi * 180 / np.pi, color='black', linewidth=1)
Ax6.set(title=r"$e_{\psi}$, RMS = " + str("%.2f" % (RMS(ePsi) * 180 / np.pi)), xlabel="time [sec]", ylabel="[deg]"), Ax6.grid(True)
plt.tight_layout()
plt.show()
@dispatch(np.ndarray, np.ndarray, np.ndarray, np.ndarray)
def PlotEulerAngles(Phi, Theta, Psi, t):
"insert angles in radians"
plt.close('Euler Angles Plot')
fig = plt.figure('Euler Angles Plot')
Ax1 = fig.add_subplot(311)
Ax1.plot(t, Phi , color='blue', linewidth=1)
Ax1.set(title=r"$\phi$", xlabel="", ylabel="[deg]"), Ax1.grid(True)
Ax2 = fig.add_subplot(312, sharex=Ax1)
Ax2.plot(t, Theta, color='blue', linewidth=1)
Ax2.set(title=r"$\theta$", xlabel="", ylabel="[deg]"), Ax2.grid(True)
Ax3 = fig.add_subplot(313, sharex=Ax1)
Ax3.plot(t, Psi , color='blue', linewidth=1)
Ax3.set(title=r"$\psi$", xlabel="time [sec]", ylabel="[deg]"), Ax3.grid(True)
plt.tight_layout()
plt.show()
def CalcO3PolyCoef(x0, x_final, v_max, plot_res=False, sim_params=None):
"""
calculate coefficients for 3rd order polynomial
x(t) = a0 + a1 * t + a2 * t^2 + a3 * t^3
for given boundary conditions:
x(t = 0) = x0
x(t = T) = x_final
d_dt[x(t = 0)] = 0
d_dt[x(t = T)] = 0
d2_dt2[x(t = t1)] = 0
| d_dt[x(t1)] | = v_max
return coefs = [a0, a1, a2, a3]
"""
def calc_x(t):
return a0 + a1 * t + a2 * t ** 2 + a3 * t ** 3
def calc_dx_dt(t):
return a1 + 2 * a2 * t + 3 * a3 * t ** 2
def calc_dx2_dt2(t):
return 2 * a2 + 6 * a3 * t
a0 = x0
a1 = 0
T = 1.5 * abs(x0 - x_final) / v_max
a2 = - 3 * (x0 - x_final) / (T ** 2)
a3 = 2 * (x0 - x_final) / (T ** 3)
if plot_res:
assert sim_params is not None
x = []
x_dot = []
x_dot_2 = []
t = np.arange(start=0, stop=T, step=sim_params['dt'])
for ti in t:
x.append(calc_x(ti))
x_dot.append(calc_dx_dt(ti))
x_dot_2.append(calc_dx2_dt2(ti))
plt.figure()
h = plt.subplot(3, 1, 1)
plt.plot(t, x)
plt.ylabel('$x$')
plt.grid(True)
plt.subplot(3, 1, 2, sharex=h)
plt.plot(t, x_dot)
plt.grid(True), plt.ylabel('$dx/dt$')
plt.subplot(3, 1, 3, sharex=h)
plt.plot(t, x_dot_2)
plt.grid(True), plt.ylabel('$dx/dt^2$'), plt.xlabel('t[sec]')
plt.show()
return [a0, a1, a2, a3]
def CalcO3PolyCoefV2(x0, x_dot_0, x_final, x_dot_max, plot_res=False, sim_params=None):
"""
calculate coefficients for 3rd order polynomial
x(t) = a0 + a1 * t + a2 * t^2 + a3 * t^3
for given boundary conditions:
x(t = 0) = x0
x(t = T) = x_final
d_dt[x(t = 0)] = x_dot_0
d_dt[x(t = T)] = 0
d2_dt2[x(t = t1)] = 0
| d_dt[x(t1)] | = v_max
return coefs = [a0, a1, a2, a3]
"""
def calc_x(t):
return a0 + a1 * t + a2 * t ** 2 + a3 * t ** 3
def calc_dx_dt(t):
return a1 + 2 * a2 * t + 3 * a3 * t ** 2
def calc_dx2_dt2(t):
return 2 * a2 + 6 * a3 * t
a0 = x0
a1 = x_dot_0
T_1 = 1.5 * (x0 - x_final) / (x_dot_0 + x_dot_max)
T_2 = 1.5 * (x0 - x_final) / (x_dot_0 - x_dot_max)
assert T_1 > 0 or T_2 > 0
if T_1 <= 0:
T = T_2
elif T_2 <= 0:
T = T_1
elif T_1 > 0 and T_2 > 0:
T = min(T_1, T_2)
else:
raise 'somethings wrong'
a3 = (2 * x0 + x_dot_0 * T - 2 * x_final) / (T ** 3)
a2 = - (x_dot_0 + 3 * a3 * T ** 2) / (2 * T)
if plot_res:
assert sim_params is not None
x = []
x_dot = []
x_dot_2 = []
t = np.arange(start=0, stop=T, step=sim_params['dt'])
for ti in t:
x.append(calc_x(ti))
x_dot.append(calc_dx_dt(ti))
x_dot_2.append(calc_dx2_dt2(ti))
plt.figure()
h = plt.subplot(3, 1, 1)
plt.plot(t, x)
plt.ylabel('$x$')
plt.grid(True)
plt.subplot(3, 1, 2, sharex=h)
plt.plot(t, x_dot)
plt.grid(True), plt.ylabel('$dx/dt$')
plt.subplot(3, 1, 3, sharex=h)
plt.plot(t, x_dot_2)
plt.grid(True), plt.ylabel('$dx/dt^2$'), plt.xlabel('t[sec]')
plt.show()
return [a0, a1, a2, a3]
if __name__ == "__main__":
calc_desired_path('random_curvature', ds=0.1, plot_results=True)