-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path03_example.R
46 lines (42 loc) · 1.47 KB
/
03_example.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
library(SVmodelRcppSMC)
# setting the seed for reproducibility
set.seed(123)
# setting model parameters
Tinit <- 1000
phiXinit <- 0.9
sigmaXinit <- 0.2
betaYinit <- 0.7
Xinit <- 0
# generate data from SV model
data_simul_sv <- generateDataSimulSV(TT = Tinit,
phiX = phiXinit,
sigmaX = sigmaXinit,
betaY = betaYinit,
initStateX0 = Xinit)
xt <- data_simul_sv$statesXt
yt <- data_simul_sv$measurementsYt
# set the number of particles
particleNumber <- 10
MM <- 5000
burn <- 4000 #round(MM/2)
startingVals <- c(phiXinit, 20, 20)
conditionalXinit <- c(Xinit, xt) + rnorm(Tinit + 1, sd = 3)
outPG <- svModelPGr(y = yt,
numParticles = particleNumber,
startingValues = startingVals,
numIter = MM,
xRinit = conditionalXinit,
10)
plotPMCMCoutput(outputPMCMC = outPG,
burnin = burn,
trueVals = c(sigmaXinit, betaYinit))
particleNumber <- 100
outPG2 <- svModelPGr(y = yt,
numParticles = particleNumber,
startingValues = startingVals,
numIter = MM,
xRinit = conditionalXinit,
10)
plotPMCMCoutput(outputPMCMC = outPG2,
burnin = burn,
trueVals = c(sigmaXinit, betaYinit))