This benchmark focus on testing KFServing performance with and without Knative queue proxy/activator on the request path.
-
Knative queue proxy does the following for the KFServing main container.
- Enforces concurrency level for the pod
- Emit metrics for autoscaling(KPA)
- Timeout enforcement
- Readiness probe
- Queue limiting
- Distributed tracing
- Graceful shutdown handling
-
Knative activator buffers the requests while pods are scaled down to zero and report metrics to autoscaler. The activator also effectively acts as a load balancer which distributes the load across all the pods as they become available in a way that does not overload them with regards to their concurrency settings. So it protects the app from burst so you do not see messages queuing in the user pods.
- K8S: v1.14.10-gke.36(8 nodes n1-standard)
- Istio: 1.1.6
- Knative: 0.11.2
- KFServing: master(with fix for kserve#844)
Note that v1.14.10-gke.36
suffers the CFS throttling bug,
and 1.15.11-gke.15
includes the CFS throttling fix.
- Create
InferenceService
kubectl apply -f ./sklearn.yaml
- Create the input vegeta configmap
kubectl apply -f ./sklearn_vegeta_cfg.yaml
- Create the benchmark job using vegeta Note that you can configure pod anti-affinity to run vegeta on a different node on which the inference pod is running.
kubectl create -f ./sk_benchmark.yaml
Create an InferenceService
with ContainerCurrency
(cc) set to 8 which is equal to the number of cores on the node.
apiVersion: "serving.kubeflow.org/v1alpha2"
kind: "InferenceService"
metadata:
name: "sklearn-iris"
spec:
default:
predictor:
parallelism: 8 # CC=8
sklearn:
storageUri: "gs://kfserving-samples/models/sklearn/iris"
QPS/Replicas | mean | p50 | p95 | p99 | Success Rate |
---|---|---|---|---|---|
5/s minReplicas=1 | 6.213ms | 5.915ms | 6.992ms | 7.615ms | 100% |
50/s minReplicas=1 | 5.738ms | 5.608ms | 6.483ms | 6.801ms | 100% |
500/s minReplicas=1 | 4.083ms | 3.743ms | 4.929ms | 5.642ms | 100% |
1000/s minReplicas=1 | 398.562ms | 5.95ms | 2.945s | 3.691s | 100% |
- Update the SKLearn Iris
InferenceService
with following yaml to use HPA
apiVersion: "serving.kubeflow.org/v1alpha2"
kind: "InferenceService"
metadata:
name: "sklearn-iris"
annotations:
autoscaling.knative.dev/class: hpa.autoscaling.knative.dev
autoscaling.knative.dev/metric: cpu
autoscaling.knative.dev/target: "80"
spec:
default:
predictor:
sklearn:
storageUri: "gs://kfserving-samples/models/sklearn/iris"
kubectl apply -f ./sklearn_hpa.yaml
- Setup virtual service to go directly to the private service to bypass the Knative Activator and queue-proxy, change the benchmark
test target url host to
sklearn-iris-raw.default.svc.cluster.local
.
apiVersion: v1
kind: Service
metadata:
name: sklearn-iris-raw
spec:
externalName: cluster-local-gateway.istio-system.svc.cluster.local
sessionAffinity: None
type: ExternalName
---
apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
name: sklearn-iris-raw
spec:
gateways:
- knative-serving/cluster-local-gateway
hosts:
- sklearn-iris-raw.default.svc.cluster.local
http:
- match:
- authority:
regex: ^sklearn-iris-raw\.default(\.svc(\.cluster\.local)?)?(?::\d{1,5})?$
gateways:
- knative-serving/cluster-local-gateway
uri:
regex: ^/v1/models/[\w-]+(:predict)?
route:
- destination:
host: sklearn-iris-predictor-default-xt264-private.default.svc.cluster.local #this is the private service to user container
port:
number: 80
weight: 100
QPS/Replicas | mean | p50 | p95 | p99 | Success Rate |
---|---|---|---|---|---|
5/s Replicas=1 | 2.673ms | 2.381ms | 4.352ms | 5.966ms | 100% |
50/s Replicas=1 | 2.188ms | 2.117ms | 2.684ms | 3.02ms | 100% |
500/s Replicas=1 | 1.376ms | 1.283ms | 1.713ms | 2.205ms | 100% |
1000/s Replicas=1 | 7.969s | 8.658s | 16.669s | 20.307s | 93.72% |
So you can see that queue-proxy and activator adds 2-3 millisecond overhead, but you get the advantage of KPA and smart load balancing. For this example we do not see much benefits because the request takes only 1-2 ms to process, however you can see the obvious advantage when request volume goes to 1000/s and KPA reacts faster and performs better than HPA.
- Create
InferenceService
kubectl apply -f ../docs/samples/tensorflow/tensorflow.yaml
- Create the input vegeta configmap
kubectl apply -f ./tf_vegeta_cfg.yaml
- Create the benchmark job using vegeta Note that you can configure pod anti-affinity to run vegeta on a different node on which the inference pod is running.
kubectl create -f ./tf_benchmark.yaml
- Create
InferenceService
with defaultContainerConcurrency
set to 0 which is unlimited concurrency, activator in this case just pass through and you would still expect requests queued on user container in case of request overload.
apiVersion: "serving.kubeflow.org/v1alpha2"
kind: "InferenceService"
metadata:
name: "flowers-sample"
spec:
default:
predictor:
tensorflow:
storageUri: "gs://kfserving-samples/models/tensorflow/flowers
resources:
requests:
cpu: "4"
memory: 2Gi
limits:
cpu: "4"
memory: 2Gi
kubectl apply -f ./tf_flowers.yaml
QPS/Replicas | mean | p50 | p95 | p99 | Success Rate |
---|---|---|---|---|---|
1/s minReplicas=1 | 110.54ms | 110.343ms | 116.116ms | 117.298ms | 100% |
5/s minReplicas=1 | 133.272ms | 131.242ms | 148.195ms | 153.291ms | 100% |
10/s minReplicas=1 | 946.376ms | 127.961ms | 4.635s | 6.934s | 100% |
- Create
InferenceService
withContainerConcurrency
set to 1, activator respects container queue limit 1 so that requests do not get queued on user pods and activator chooses to route the requests to the pods which have capacity.
apiVersion: "serving.kubeflow.org/v1alpha2"
kind: "InferenceService"
metadata:
name: "flowers-sample"
spec:
default:
predictor:
parallelism: 1 #CC=1
tensorflow:
storageUri: "gs://kfserving-samples/models/tensorflow/flowers
resources:
requests:
cpu: "4"
memory: 2Gi
limits:
cpu: "4"
memory: 2Gi
QPS/Replicas | mean | p50 | p95 | p99 | Success Rate |
---|---|---|---|---|---|
1/s minReplicas=1 | 103.766ms | 102.869ms | 111.559ms | 116.577ms | 100% |
5/s minReplicas=1 | 117.456ms | 117.117ms | 122.346ms | 126.139ms | 100% |
10/s minReplicas=1 | 702.249ms | 111.289ms | 3.469s | 3.831s | 100% |
So here you can see that with CC=1, when you send one request at a time the latency does not make much different with CC=0 or CC=1. However when you send more concurrent requests you start to notice pronounced result when CC=1 because activator starts to take effect and you will observe better tail latency at p95 and p99 thanks to Knative activator smarter load balancing than random load balancing.
apiVersion: "serving.kubeflow.org/v1alpha2"
kind: "InferenceService"
metadata:
name: "flowers-sample-hpa"
annotations:
autoscaling.knative.dev/class: hpa.autoscaling.knative.dev
autoscaling.knative.dev/metric: cpu
autoscaling.knative.dev/target: "60"
spec:
default:
predictor:
tensorflow:
storageUri: "gs://kfserving-samples/models/tensorflow/flowers
resources:
requests:
cpu: "4"
memory: 2Gi
limits:
cpu: "4"
memory: 2Gi
Setup virtual service to bypass the knative proxy and update vegeta config target URL to
http://flowers-sample-raw.default.svc.cluster.local/v1/models/flowers-sample-hpa:predict
apiVersion: v1
kind: Service
metadata:
name: flowers-sample-raw
namespace: default
spec:
externalName: cluster-local-gateway.istio-system.svc.cluster.local
sessionAffinity: None
type: ExternalName
---
apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
name: flowers-sample-raw
spec:
gateways:
- knative-serving/cluster-local-gateway
hosts:
- flowers-sample-raw.default.svc.cluster.local
http:
- match:
- authority:
regex: ^flowers-sample-raw\.default(\.svc(\.cluster\.local)?)?(?::\d{1,5})?$
gateways:
- knative-serving/cluster-local-gateway
uri:
regex: ^/v1/models/[\w-]+(:predict)?
route:
- destination:
host: flowers-sample-hpa-predictor-default-95bbz-private.default.svc.cluster.local #this is the private service to user container
port:
number: 80
weight: 100
QPS/Replicas | mean | p50 | p95 | p99 | Success Rate |
---|---|---|---|---|---|
1/s Replicas=1 | 129.143ms | 112.853ms | 118.143ms | 128.557ms | 100% |
5/s Replicas=1 | 127.947ms | 127.549ms | 132.171ms | 135.801ms | 100% |
10/s Replicas=1 | 5.461s | 5.087s | 12.992s | 14.587s | 100% |
This experiment runs the InferenceService
using HPA with average target utilization 80% of CPU and calls directly to Kubernetes Service bypassing
the Knative queue proxy and activator. You can see that KPA reacts faster with the load and performs better than HPA for both low latency and high latency
requests.