-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_recon.py
executable file
·52 lines (44 loc) · 2.2 KB
/
plot_recon.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
Developed by: Ivan Legorreta
Contact information: ilegorreta@outlook.com
'''
import os
import sys
import matplotlib
import matplotlib.pyplot as plt
import nibabel as nib
from PIL import Image
import numpy as np
import matplotlib.gridspec as gridspec
dataDir = sys.argv[1]
#----------------------------------------------Reconstruction----------------------------------------------
recon=[]
for img in sorted(os.listdir(dataDir + "/Best_Images_crop/recon")):
if (img == "recon.nii"):
size=[nib.load(f"{dataDir}/Best_Images_crop/recon/{img}").get_fdata()][0].shape[2]
recon.extend([nib.load(f"{dataDir}/Best_Images_crop/recon/{img}").get_fdata()[:,:,int(size/3)]])
recon.extend([nib.load(f"{dataDir}/Best_Images_crop/recon/{img}").get_fdata()[:,:,int(size/2)]])
recon.extend([nib.load(f"{dataDir}/Best_Images_crop/recon/{img}").get_fdata()[:,:,int(size-20)]])
size=[nib.load(f"{dataDir}/Best_Images_crop/recon/{img}").get_fdata()][0].shape[1]
recon.extend([nib.load(f"{dataDir}/Best_Images_crop/recon/{img}").get_fdata()[:,int(size/3),:]])
recon.extend([nib.load(f"{dataDir}/Best_Images_crop/recon/{img}").get_fdata()[:,int(size/2),:]])
recon.extend([nib.load(f"{dataDir}/Best_Images_crop/recon/{img}").get_fdata()[:,int(size-20),:]])
size=[nib.load(f"{dataDir}/Best_Images_crop/recon/{img}").get_fdata()][0].shape[0]
recon.extend([nib.load(f"{dataDir}/Best_Images_crop/recon/{img}").get_fdata()[int(size/3),:,:]])
recon.extend([nib.load(f"{dataDir}/Best_Images_crop/recon/{img}").get_fdata()[int(size/2),:,:]])
recon.extend([nib.load(f"{dataDir}/Best_Images_crop/recon/{img}").get_fdata()[int(size-20),:,:]])
break
#Set properties of images
plt.rcParams['figure.facecolor'] = 'black'
plt.style.use('dark_background')
fig=plt.figure(figsize=(25, 15))
rows =3
columns = 3
for i in range(1,len(recon)+1):
fig.add_subplot(rows, columns, i)
plt.imshow(np.squeeze(np.asarray(recon[i-1])), cmap='gray',interpolation='nearest')
plt.axis('off')
plt.subplots_adjust(wspace=0, hspace=0, left=0, right=1, bottom=0, top=1)
plt.savefig(dataDir + "/Validation_images/recon.png", dpi=300)