File tree Expand file tree Collapse file tree 1 file changed +6
-0
lines changed Expand file tree Collapse file tree 1 file changed +6
-0
lines changed Original file line number Diff line number Diff line change @@ -10,6 +10,8 @@ Deep Learning 기반의 모델링으로 Object Detection 문제를 효과적으
10
10
![ Summary SlideShare #1 ] ( /object-detection-1.png?raw=true " Summary ")
11
11
12
12
13
+
14
+
13
15
### R-CNN 이전의 모델
14
16
15
17
![ Summary : Before R-CNN] ( /object-detection-2.png?raw=true " Before R-CNN ")
@@ -19,6 +21,8 @@ Deep Learning 기반의 모델링으로 Object Detection 문제를 효과적으
19
21
* [ OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks] ( https://arxiv.org/abs/1312.6229 )
20
22
* [ Deep Neural Networks for Object Detection] ( https://pdfs.semanticscholar.org/713f/73ce5c3013d9fb796c21b981dc6629af0bd5.pdf )
21
23
24
+
25
+
22
26
### R-CNN 류의 모델 : R-CNN의 모듈들을 개선했거나 유사 구조의 Detection Pipeline을 사용
23
27
24
28
![ Summary : R-CNN] ( /object-detection-3.png?raw=true " R-CNN ")
@@ -35,6 +39,8 @@ Deep Learning 기반의 모델링으로 Object Detection 문제를 효과적으
35
39
* [ Faster R-CNN +++] ( https://arxiv.org/abs/1512.03385 )
36
40
* [ R-FCN: Object Detection via Region-based Fully Convolutional Networks] ( https://arxiv.org/abs/1605.06409 ) : Faster R-CNN을 Fully Convolutional 하게 변경.
37
41
42
+
43
+
38
44
### Single Shot Detector : 1번의 Neural Network Forwarding으로 여러 클래스의 여러 물체를 동시 검출하는 Pipeline을 사용
39
45
40
46
![ Summary : Single Shot Detector] ( /object-detection-4.png?raw=true " Single Shot detector 1 ")
You can’t perform that action at this time.
0 commit comments