forked from nico/collectiveintelligence-book
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrecommendations_test.py
156 lines (122 loc) · 5.59 KB
/
recommendations_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import unittest
import recommendations
class DistanceTestCase:
def testIdentical(self):
prefs = { 'Nico': {'h': 1, 'b':0.4}, 'Yann': {'h': 1, 'b': 0.4}}
self.assertEquals(1.0, self.metric(prefs, 'Nico', 'Yann'))
def testOneEqualElement(self):
prefs = { 'Nico': {'h': 0.9}, 'Yann': {'h': 0.9}}
self.assertEquals(1.0, self.metric(prefs, 'Nico', 'Yann'))
def testEmptyPrefs(self):
prefs = { 'Nico': {}, 'Yann': {}}
self.assertEquals(0.0, self.metric(prefs, 'Nico', 'Yann'))
def testEmptyIntersection(self):
prefs = { 'Nico': {'h': 1}, 'Yann': {'z': 1}}
self.assertEquals(0.0, self.metric(prefs, 'Nico', 'Yann'))
def testAdditionalLeft(self):
addLeft = self.prefs.copy()
addLeft['Nico']['c'] = 0.9
self.assertAlmostEquals(self.metric(self.prefs, 'Nico', 'Yann'),
self.metric(addLeft, 'Nico', 'Yann'))
def testAdditionalRight(self):
addRight = self.prefs.copy()
addRight['Yann']['c'] = 0.9
self.assertAlmostEquals(self.metric(self.prefs, 'Nico', 'Yann'),
self.metric(addRight, 'Nico', 'Yann'))
class SimDistanceTestCase(DistanceTestCase, unittest.TestCase):
def setUp(self):
self.metric = recommendations.sim_distance
self.prefs = { 'Nico': {'h': 0.8, 'b':0.2}, 'Yann': {'h': 0.4, 'b':0.1}}
def testNormal(self):
self.assertAlmostEquals(0.7080596, self.metric(self.prefs, 'Nico', 'Yann'))
class SimPearsonTestCase(DistanceTestCase, unittest.TestCase):
def setUp(self):
self.metric = recommendations.sim_pearson
self.prefs = { 'Nico': {'h': 0.8, 'b':0.2}, 'Yann': {'h': 0.4, 'b':0.1}}
def testNormal(self):
self.assertAlmostEquals(1, self.metric(self.prefs, 'Nico', 'Yann'))
class TopMatchesTest(unittest.TestCase):
def setUp(self):
self.data = {
'Nico': { 'Python': 4.5, 'Ruby': 3.0, 'C++': 3.4, 'Java': 2.5 },
'Yann': { 'Python': 3.0, 'Ruby': 4.5, 'C++': 3.4, 'Java': 1.5 },
'Josh': { 'Python': 0.5, 'Ruby': 0.0, 'C++': 1.0, 'Java': 5.0 },
'Kerstin': { 'Chocolate': 5.0 },
}
def testBasics(self):
scores = { 'Yann': 3, 'Kerstin': 2, 'Josh': 1 }
def stubDistance(prefs, p1, p2):
self.assertEquals(self.data, prefs)
if p1 == 'Nico': return scores[p2]
else: return scores[p1]
m = recommendations.topMatches(self.data, 'Nico', similarity=stubDistance)
self.assertEquals([(3, 'Yann'), (2, 'Kerstin'), (1, 'Josh')], m)
def testNormalWithPearson(self):
m = recommendations.topMatches(self.data, 'Nico',
similarity=recommendations.sim_pearson)
# With pearson, disagreement is worse than no common ground
self.assertEquals(['Yann', 'Kerstin', 'Josh'], [n for (s,n) in m])
def testNormalWithDistance(self):
m = recommendations.topMatches(self.data, 'Nico',
similarity=recommendations.sim_distance)
# With distance, disagreement is closer than no common ground
self.assertEquals(['Yann', 'Josh', 'Kerstin'], [n for (s,n) in m])
def testNLargetThanCount(self):
m = recommendations.topMatches(self.data, 'Kerstin', n=2*len(self.data))
self.assertEquals(len(self.data) - 1, len(m))
class GetRecommendationsTest(unittest.TestCase):
def setUp(self):
self.data = {
'Nico': { 'Python': 4.5, 'Ruby': 3.0, 'C++': 3.4, 'Java': 2.5 },
'Yann': { 'Python': 3.0, 'Ruby': 4.5, 'C++': 3.4, 'Java': 1.5,
'Mathematica': 3.5, 'Chocolate': 2.0, 'Patterns': 2.0 },
'Josh': { 'Python': 0.5, 'Ruby': 0.0, 'C++': 1.0, 'Java': 5.0,
'Patterns': 5.0 },
'Kerstin': { 'Python': 0.1, 'Chocolate': 5.0 },
}
def testBasics(self):
r = recommendations.getRecommendations(self.data, 'Nico',
similarity=recommendations.sim_distance)
#print recommendations.sim_distance(self.data, 'Nico', 'Yann')
#print recommendations.sim_distance(self.data, 'Nico', 'Josh')
#print recommendations.sim_distance(self.data, 'Nico', 'Kerstin')
#print r
self.assertEquals(['Mathematica', 'Chocolate', 'Patterns'],
[n for s,n in r])
class TransformPrefsTest(unittest.TestCase):
def testBasics(self):
d = { 'a': {'b': 0.4}, 'c': {'d': 0.5} }
expected = { 'b': {'a': 0.4}, 'd': {'c' : 0.5} }
self.assertEquals(expected, recommendations.transformPrefs(d))
def testEmptyPrefsList(self):
d = { 'a': {}, 'c': {'d': 0.5} }
expected = { 'd': {'c' : 0.5} }
self.assertEquals(expected, recommendations.transformPrefs(d))
def testOnlyEmptyPrefs(self):
d = { 'a': {} }
expected = { }
self.assertEquals(expected, recommendations.transformPrefs(d))
def testAllEmpty(self):
d = { }
expected = { }
self.assertEquals(expected, recommendations.transformPrefs(d))
def testCollect(self):
d = { 'a': {'z': 0.1}, 'b': {'z' : 0.2}, 'c': {'z': 0.3} }
expected = { 'z': {'a': 0.1, 'b': 0.2, 'c': 0.3} }
self.assertEquals(expected, recommendations.transformPrefs(d))
class GetRecommendedItemsTest(unittest.TestCase):
def testBasics(self):
d = {'N': {'p': 1.0, 'j': 0.3}, 'Y':{'p': 0.8, 'j': 0.2, 'r':1.0} }
itemsim = recommendations.calculateSimilarItems(d)
r = recommendations.getRecommendedItems(d, itemsim, 'N')
self.assertEquals(1, len(r))
self.assertEquals('r', r[0][1])
class SimTanimotoTestCase(DistanceTestCase, unittest.TestCase):
def setUp(self):
self.metric = recommendations.sim_tanimoto
self.prefs = { 'Nico': {'h': 0.8, 'b':0.2}, 'Yann': {'h': 0.4, 'b':0.1}}
def testNormal(self):
expected = (0.32 + 0.02) / ((0.64 + 0.04) + (0.16 + 0.01) - (0.32 + 0.02))
self.assertAlmostEquals(expected, self.metric(self.prefs, 'Nico', 'Yann'))
if __name__ == '__main__':
unittest.main()