forked from nico/collectiveintelligence-book
-
Notifications
You must be signed in to change notification settings - Fork 0
/
numpredict.py
206 lines (155 loc) · 5.7 KB
/
numpredict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import math
import random
import clusters
def wineprice(rating, age):
peak_age = rating - 50
price = rating/2
if age > peak_age:
price = price * (5 - (age - peak_age))
else:
price = price * (5 * ((age + 1)/peak_age))
return max(0, price)
def wineset1(k=300):
rows = []
for i in range(k):
rating = random.random()*50 + 50
age = random.random() * 50
price = wineprice(rating, age) * (random.random()*0.4 + 0.8)
rows.append({'input': (rating, age), 'result': price})
return rows
def wineset2(k=300):
rows = []
for i in range(k):
rating = random.random()*50 + 50
age = random.random() * 50
aisle = float(random.randint(1, 20))
bottlesize = [375.0, 750.0, 1500.0, 3000.0][random.randint(0, 3)]
price = wineprice(rating, age) * (random.random()*0.4 + 0.8)
# XXXP179: "less noise": Not really, text has 0.9*r + 0.2, that's _more_
# noise?
price *= bottlesize / 750
rows.append({'input': (rating, age, aisle, bottlesize), 'result': price})
return rows
def wineset3(k=300):
rows = wineset1(k)
for row in rows:
if random.random() < 0.5:
row['result'] *= 0.6 # "discount price", to simulate uneven distribution
return rows
euclidean = clusters.euclid_dist
def getdistances(data, vec1):
distancelist = map(lambda v: euclidean(vec1, v['input']), data)
return sorted(zip(distancelist, range(len(data))))
def knnestimate(data, vec1, k=3):
return weightedknn(data, vec1, k=k, weightfun=lambda d:1.0)
def inverseweight(dist, num=1.0, const=0.1):
return num/(dist + const)
def subtractweight(dist, const=1.0):
# Returns 0 for items with no neighbors within `dist`
return max(0, const - dist)
#def gaussianweight(dist, sigma=10.0):
def gaussianweight(dist, sigma=5.0):
return math.exp(-0.5 * (dist/sigma)**2)
def weightedknn(data, vec1, k=3, weightfun=gaussianweight):
# Compute all n distances, but then only use k. What the hell.
dlist = getdistances(data, vec1)
avg = 0.0
totalweight = 0.0
for i in range(k):
dist, idx = dlist[i]
weight = weightfun(dist)
avg += weight * data[idx]['result']
totalweight += weight
avg /= totalweight
return avg
def partition(l, pred):
"""Paritions a list into to lists, based on a binary predicate."""
flist, tlist = [], []
for row in l:
(tlist if pred(row) else flist).append(row)
return flist, tlist
def dividedata(data, pTest=0.05):
# The approach used in the book doesn't has some variation in the size
# of the testset (sometimes the test set has 0 elements!), so use a
# different approach instead
#return partition(data, lambda r: random.random() < pTest)
n = len(data)
nTest = int(n*pTest)
shuffledData = data[:]
random.shuffle(shuffledData)
return shuffledData[0:n-nTest], shuffledData[n-nTest:n]
def testalgorithm(algfun, trainset, testset):
error = 0.0
for row in testset:
guess = algfun(trainset, row['input'])
error += (row['result'] - guess)**2
return error / len(testset)
def crossvalidate(algfun, data, trials=100, pTest=0.05):
error = 0.0
for i in range(trials):
trainset, testset = dividedata(data, pTest)
error += testalgorithm(algfun, trainset, testset)
return error / trials
def rescale(data, scale):
scaledata = []
for row in data:
scaled = [scale[i]*row['input'][i] for i in range(len(scale))]
scaledata.append({'input':scaled, 'result':row['result']})
return scaledata
def createcostfunction(algfun, data):
def costf(scale):
print scale
sdata = rescale(data, scale)
return crossvalidate(algfun, sdata, trials=100)
return costf
def probguess(data, vec1, low, high, k=5, weightfun=gaussianweight):
"""Returns the probability that the result for input vec1 is in the
interval [low, hight], based on the trainingdata data."""
dlist = getdistances(data, vec1)
nweight = 0.0 # weight of neighbors in interval
tweight = 0.0 # weight of all neighbors ("total weight")
for i in range(k):
dist = dlist[i][0]
idx = dlist[i][1]
weight = weightfun(dist)
v = data[idx]['result']
if low <= v <= high:
nweight += weight
tweight += weight
if tweight == 0.0: return 0.0
return nweight / tweight
if __name__ == '__main__':
s = wineset1(50)
print knnestimate(s, (95.0, 3.0), k=1)
print knnestimate(s, (95.0, 3.0), k=3)
print knnestimate(s, (95.0, 3.0), k=5)
print weightedknn(s, (95.0, 3.0), k=3)
print wineprice(95.0, 3.0)
print crossvalidate(knnestimate, s)
print crossvalidate(lambda d, v: knnestimate(d, v, k=1), s)
print crossvalidate(lambda d, v: knnestimate(d, v, k=5), s)
print crossvalidate(lambda d, v: knnestimate(d, v, k=7), s)
print crossvalidate(lambda d, v: weightedknn(d, v, k=5), s)
# Use optimization to automatically rescale different dimensions
print
print 'set 2, not-to-scale parameters (XXX buggy, broken, incomplete)'
s = wineset2(50)
print crossvalidate(knnestimate, s)
print crossvalidate(knnestimate, rescale(s, [10, 10, 0, 0.5]))
# automatically figure out rescaling parameters. This runs forever.
# And my optimization code might be broken, this recomputes the same
# values over and over again. I should cache them. And fix broken stuff. (XXX)
#import optimization
#print optimization.annealingoptimize([(0, 20)] * 4,
#createcostfunction(knnestimate, s), step=2)
# This shows that tracking distributions is worthwile
print
print 'set 3, uneven distribution'
s = wineset3()
print probguess(s, [99, 20], 20, 120)
print probguess(s, [99, 20], 120, 1000)
print probguess(s, [99, 20], 40, 80)
print probguess(s, [99, 20], 80, 120)
print 'real price:', wineprice(99.0, 20.0)
print 'estimated price:', weightedknn(s, [99.0, 20.0])
print 'crossvalidation error:', crossvalidate(weightedknn, s)