-
-
Notifications
You must be signed in to change notification settings - Fork 200
/
epi.R
228 lines (211 loc) · 7.53 KB
/
epi.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# IGraph R package
# Copyright (C) 2014 Gabor Csardi <csardi.gabor@gmail.com>
# 334 Harvard street, Cambridge, MA 02139 USA
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
# 02110-1301 USA
#
###################################################################
#' @rdname sir
#' @export
time_bins <- function(x, middle = TRUE) {
UseMethod("time_bins")
}
#' @method time_bins sir
#' @rdname sir
#' @export
#' @importFrom stats IQR
time_bins.sir <- function(x, middle = TRUE) {
sir <- x
if (!inherits(sir, "sir")) {
stop("This is not an SIR model output")
}
big.time <- unlist(sapply(sir, "[[", "times"))
medlen <- median(sapply(lapply(sir, "[[", "times"), length))
## Adhoc use of Freedman-Diaconis binwidth; rescale time accordingly.
w <- 2 * IQR(big.time) / (medlen^(1 / 3))
minbt <- min(big.time)
maxbt <- max(big.time)
res <- seq(minbt, maxbt, length.out = ceiling((maxbt - minbt) / w))
if (middle) {
res <- (res[-1] + res[-length(res)]) / 2
}
res
}
#' @importFrom stats median
#' @method median sir
#' @rdname sir
#' @export
median.sir <- function(x, na.rm = FALSE, ...) {
sir <- x
if (!inherits(sir, "sir")) {
stop("This is not an SIR model output")
}
times <- unlist(sapply(sir, "[[", "times"))
big.N.NS <- unlist(sapply(sir, "[[", "NS"))
big.N.NI <- unlist(sapply(sir, "[[", "NI"))
big.N.NR <- unlist(sapply(sir, "[[", "NR"))
time.bin <- cut(times, time_bins(sir, middle = FALSE), include.lowest = TRUE)
NS <- tapply(big.N.NS, time.bin, median, na.rm = na.rm)
NI <- tapply(big.N.NI, time.bin, median, na.rm = na.rm)
NR <- tapply(big.N.NR, time.bin, median, na.rm = na.rm)
list(NS = NS, NI = NI, NR = NR)
}
#' @importFrom stats quantile
#' @method quantile sir
#' @rdname sir
#' @export
quantile.sir <- function(x, comp = c("NI", "NS", "NR"), prob, ...) {
sir <- x
if (!inherits(sir, "sir")) {
stop("This is not an SIR model output")
}
comp <- toupper(igraph.match.arg(comp))
times <- unlist(sapply(sir, "[[", "times"))
big.N <- unlist(sapply(sir, function(x) {
x[[comp]]
}))
time.bin <- cut(times, time_bins(sir, middle = FALSE), include.lowest = TRUE)
res <- lapply(prob, function(pp) {
tapply(big.N, time.bin, function(x) {
quantile(x, prob = pp)
})
})
if (length(res) == 1) {
res <- res[[1]]
}
res
}
# R function to plot compartment total curves from simul.net.epi .
# Inputs: sim.res := list of simulated network SIR processes
# comp := compartment (i.e., "NS", "NI", or "NR")
# q := vector of lower and upper quantiles, resp
# cols := char vector of colors for lines, median, and quantiles, resp.
# Outputs: None. Just produces the plot of all compartment curves,
# with median and quantiles.
#' Plotting the results on multiple SIR model runs
#'
#' This function can conveniently plot the results of multiple SIR model
#' simulations.
#'
#' The number of susceptible/infected/recovered individuals is plotted over
#' time, for multiple simulations.
#'
#' @param x The output of the SIR simulation, coming from the [sir()]
#' function.
#' @param comp Character scalar, which component to plot. Either \sQuote{NI}
#' (infected, default), \sQuote{NS} (susceptible) or \sQuote{NR} (recovered).
#' @param median Logical scalar, whether to plot the (binned) median.
#' @param quantiles A vector of (binned) quantiles to plot.
#' @param color Color of the individual simulation curves.
#' @param median_color Color of the median curve.
#' @param quantile_color Color(s) of the quantile curves. (It is recycled if
#' needed and non-needed entries are ignored if too long.)
#' @param lwd.median Line width of the median.
#' @param lwd.quantile Line width of the quantile curves.
#' @param lty.quantile Line type of the quantile curves.
#' @param xlim The x limits, a two-element numeric vector. If `NULL`, then
#' it is calculated from the data.
#' @param ylim The y limits, a two-element numeric vector. If `NULL`, then
#' it is calculated from the data.
#' @param xlab The x label.
#' @param ylab The y label. If `NULL` then it is automatically added based
#' on the `comp` argument.
#' @param \dots Additional arguments are passed to [plot()], that is run
#' before any of the curves are added, to create the figure.
#' @return Nothing.
#' @author Eric Kolaczyk (<http://math.bu.edu/people/kolaczyk/>) and Gabor
#' Csardi \email{csardi.gabor@@gmail.com}.
#' @seealso [sir()] for running the actual simulation.
#' @references Bailey, Norman T. J. (1975). The mathematical theory of
#' infectious diseases and its applications (2nd ed.). London: Griffin.
#' @method plot sir
#' @family processes
#' @export
#' @importFrom graphics plot lines
#' @keywords graphs
#' @examples
#'
#' g <- sample_gnm(100, 100)
#' sm <- sir(g, beta = 5, gamma = 1)
#' plot(sm)
#'
plot.sir <- function(x, comp = c("NI", "NS", "NR"),
median = TRUE, quantiles = c(0.1, 0.9), color = NULL,
median_color = NULL, quantile_color = NULL,
lwd.median = 2, lwd.quantile = 2, lty.quantile = 3,
xlim = NULL, ylim = NULL, xlab = "Time", ylab = NULL, ...) {
sir <- x
if (!inherits(sir, "sir")) {
stop("This is not an SIR model output")
}
comp <- toupper(igraph.match.arg(comp))
if (!all(quantiles >= 0 & quantiles <= 1)) {
stop("Quantiles should be in [0,1]")
}
if (is.null(color)) {
color <- c(NI = "skyblue", NS = "pink", NR = "palegoldenrod")[comp]
}
if (is.null(median_color)) {
median_color <- c(NI = "blue", NS = "red", NR = "gold")[comp]
}
if (is.null(quantile_color)) {
quantile_color <- c(NI = "blue", NS = "red", NR = "gold")[comp]
}
quantile_color <- rep(quantile_color, length.out = length(quantiles))
ns <- length(sir)
if (is.null(xlim)) {
xlim <- c(0, max(sapply(sir, function(x) max(x$times))))
}
if (is.null(ylim)) {
ylim <- c(0, max(sapply(sir, function(x) max(x[[comp]]))))
}
## Generate the plot, first with individual curves, and then
## adding median and quantile curves.
if (is.null(ylab)) {
if (comp == "NI") {
ylab <- expression(N[I](t))
}
if (comp == "NR") {
ylab <- expression(N[R](t))
}
if (comp == "NS") {
ylab <- expression(N[S](t))
}
}
# Plot the stochastic curves individually.
plot(0, 0, type = "n", xlim = xlim, ylim = ylim, xlab = xlab, ylab = ylab, ...)
lapply(seq_along(sir), function(i) {
lines(sir[[i]]$times, sir[[i]][[comp]], col = color[1])
})
# Plot the median and quantiles.
if (median || length(quantiles) > 0) {
time.bin <- time_bins(sir, middle = TRUE)
}
if (median) {
lines(time.bin, median(sir)[[comp]],
type = "l",
lwd = lwd.median, col = median_color
)
}
for (i in seq_along(quantiles)) {
my.ql <- quantile(sir, comp, quantiles[i])
lines(time.bin, my.ql,
type = "l", lty = lty.quantile,
lwd = lwd.quantile, col = quantile_color[i]
)
}
invisible()
}