-
-
Notifications
You must be signed in to change notification settings - Fork 200
/
hrg.R
1018 lines (948 loc) · 34.2 KB
/
hrg.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#' Predict edges based on a hierarchical random graph model
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `hrg.predict()` was renamed to `predict_edges()` to create a more
#' consistent API.
#' @inheritParams predict_edges
#' @keywords internal
#' @export
hrg.predict <- function(graph, hrg = NULL, start = FALSE, num.samples = 10000, num.bins = 25) { # nocov start
lifecycle::deprecate_soft("2.0.0", "hrg.predict()", "predict_edges()")
predict_edges(graph = graph, hrg = hrg, start = start, num.samples = num.samples, num.bins = num.bins)
} # nocov end
#' Fit a hierarchical random graph model
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `hrg.fit()` was renamed to `fit_hrg()` to create a more
#' consistent API.
#' @inheritParams fit_hrg
#' @keywords internal
#' @export
hrg.fit <- function(graph, hrg = NULL, start = FALSE, steps = 0) { # nocov start
lifecycle::deprecate_soft("2.0.0", "hrg.fit()", "fit_hrg()")
fit_hrg(graph = graph, hrg = hrg, start = start, steps = steps)
} # nocov end
#' Sample from a hierarchical random graph model
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `hrg.game()` was renamed to `sample_hrg()` to create a more
#' consistent API.
#' @inheritParams sample_hrg
#' @keywords internal
#' @export
hrg.game <- function(hrg) { # nocov start
lifecycle::deprecate_soft("2.0.0", "hrg.game()", "sample_hrg()")
sample_hrg(hrg = hrg)
} # nocov end
#' Create an igraph graph from a hierarchical random graph model
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `hrg.dendrogram()` was renamed to `hrg_tree()` to create a more
#' consistent API.
#' @inheritParams hrg_tree
#' @keywords internal
#' @export
hrg.dendrogram <- function(hrg) { # nocov start
lifecycle::deprecate_soft("2.0.0", "hrg.dendrogram()", "hrg_tree()")
hrg_tree(hrg = hrg)
} # nocov end
#' Create a hierarchical random graph from an igraph graph
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `hrg.create()` was renamed to `hrg()` to create a more
#' consistent API.
#' @inheritParams hrg
#' @keywords internal
#' @export
hrg.create <- function(graph, prob) { # nocov start
lifecycle::deprecate_soft("2.0.0", "hrg.create()", "hrg()")
hrg(graph = graph, prob = prob)
} # nocov end
#' Create a consensus tree from several hierarchical random graph models
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `hrg.consensus()` was renamed to `consensus_tree()` to create a more
#' consistent API.
#' @inheritParams consensus_tree
#' @keywords internal
#' @export
hrg.consensus <- function(graph, hrg = NULL, start = FALSE, num.samples = 10000) { # nocov start
lifecycle::deprecate_soft("2.0.0", "hrg.consensus()", "consensus_tree()")
consensus_tree(graph = graph, hrg = hrg, start = start, num.samples = num.samples)
} # nocov end
# IGraph R package
# Copyright (C) 2011-2012 Gabor Csardi <csardi.gabor@gmail.com>
# 334 Harvard street, Cambridge, MA 02139 USA
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
# 02110-1301 USA
#
###################################################################
#' Hierarchical random graphs
#'
#' Fitting and sampling hierarchical random graph models.
#'
#' A hierarchical random graph is an ensemble of undirected graphs with \eqn{n}
#' vertices. It is defined via a binary tree with \eqn{n} leaf and \eqn{n-1}
#' internal vertices, where the internal vertices are labeled with
#' probabilities. The probability that two vertices are connected in the
#' random graph is given by the probability label at their closest common
#' ancestor.
#'
#' Please see references below for more about hierarchical random graphs.
#'
#' igraph contains functions for fitting HRG models to a given network
#' (`fit_hrg()`, for generating networks from a given HRG ensemble
#' (`sample_hrg()`), converting an igraph graph to a HRG and back
#' (`hrg()`, `hrg_tree()`), for calculating a consensus tree from a set
#' of sampled HRGs (`consensus_tree()`) and for predicting missing edges in
#' a network based on its HRG models (`predict_edges()`).
#'
#' The igraph HRG implementation is heavily based on the code published by
#' Aaron Clauset, at his website (not functional any more).
#'
#' @name hrg-methods
#' @family hierarchical random graph functions
NULL
#' Fit a hierarchical random graph model
#'
#' `fit_hrg()` fits a HRG to a given graph. It takes the specified
#' `steps` number of MCMC steps to perform the fitting, or a convergence
#' criteria if the specified number of steps is zero. `fit_hrg()` can start
#' from a given HRG, if this is given in the `hrg()` argument and the
#' `start` argument is `TRUE`. It can be converted to the `hclust` class using
#' `as.hclust()` provided in this package.
#'
#' @param graph The graph to fit the model to. Edge directions are ignored in
#' directed graphs.
#' @param hrg A hierarchical random graph model, in the form of an
#' `igraphHRG` object. `fit_hrg()` allows this to be `NULL`, in
#' which case a random starting point is used for the fitting.
#' @param start Logical, whether to start the fitting/sampling from the
#' supplied `igraphHRG` object, or from a random starting point.
#' @param steps The number of MCMC steps to make. If this is zero, then the
#' MCMC procedure is performed until convergence.
#' @return `fit_hrg()` returns an `igraphHRG` object. This is a list
#' with the following members:
#' \item{left}{Vector that contains the left children of the internal
#' tree vertices. The first vertex is always the root vertex, so the
#' first element of the vector is the left child of the root
#' vertex. Internal vertices are denoted with negative numbers, starting
#' from -1 and going down, i.e. the root vertex is -1. Leaf vertices
#' are denoted by non-negative number, starting from zero and up.}
#' \item{right}{Vector that contains the right children of the vertices,
#' with the same encoding as the `left` vector.}
#' \item{prob}{The connection probabilities attached to the internal
#' vertices, the first number belongs to the root vertex (i.e. internal
#' vertex -1), the second to internal vertex -2, etc.}
#' \item{edges}{The number of edges in the subtree below the given
#' internal vertex.}
#' \item{vertices}{The number of vertices in the subtree below the
#' given internal vertex, including itself.}
#' @references A. Clauset, C. Moore, and M.E.J. Newman. Hierarchical structure
#' and the prediction of missing links in networks. *Nature* 453, 98--101
#' (2008);
#'
#' A. Clauset, C. Moore, and M.E.J. Newman. Structural Inference of Hierarchies
#' in Networks. In E. M. Airoldi et al. (Eds.): ICML 2006 Ws, *Lecture
#' Notes in Computer Science* 4503, 1--13. Springer-Verlag, Berlin Heidelberg
#' (2007).
#' @examplesIf rlang::is_interactive()
#'
#' ## A graph with two dense groups
#' g <- sample_gnp(10, p = 1 / 2) + sample_gnp(10, p = 1 / 2)
#' hrg <- fit_hrg(g)
#' hrg
#' summary(as.hclust(hrg))
#'
#' ## The consensus tree for it
#' consensus_tree(g, hrg = hrg, start = TRUE)
#'
#' ## Prediction of missing edges
#' g2 <- make_full_graph(4) + (make_full_graph(4) - path(1, 2))
#' predict_edges(g2)
#' @export
#' @family hierarchical random graph functions
fit_hrg <- function(graph, hrg = NULL, start = FALSE, steps = 0) {
# Argument checks
ensure_igraph(graph)
if (is.null(hrg)) {
hrg <- list(
left = c(), right = c(), prob = c(), edges = c(),
vertices = c()
)
}
hrg <- lapply(
hrg[c("left", "right", "prob", "edges", "vertices")],
as.numeric
)
start <- as.logical(start)
steps <- as.numeric(steps)
on.exit(.Call(R_igraph_finalizer))
# Function call
res <- .Call(R_igraph_hrg_fit, graph, hrg, start, steps)
if (igraph_opt("add.vertex.names") && is_named(graph)) {
res$names <- V(graph)$name
}
class(res) <- "igraphHRG"
res
}
#' Create a consensus tree from several hierarchical random graph models
#'
#' `consensus_tree()` creates a consensus tree from several fitted
#' hierarchical random graph models, using phylogeny methods. If the `hrg()`
#' argument is given and `start` is set to `TRUE`, then it starts
#' sampling from the given HRG. Otherwise it optimizes the HRG log-likelihood
#' first, and then samples starting from the optimum.
#'
#' @param graph The graph the models were fitted to.
#' @param hrg A hierarchical random graph model, in the form of an
#' `igraphHRG` object. `consensus_tree()` allows this to be
#' `NULL` as well, then a HRG is fitted to the graph first, from a
#' random starting point.
#' @param start Logical, whether to start the fitting/sampling from the
#' supplied `igraphHRG` object, or from a random starting point.
#' @param num.samples Number of samples to use for consensus generation or
#' missing edge prediction.
#' @return `consensus_tree()` returns a list of two objects. The first
#' is an `igraphHRGConsensus` object, the second is an
#' `igraphHRG` object. The `igraphHRGConsensus` object has the
#' following members:
#' \item{parents}{For each vertex, the id of its parent vertex is stored,
#' or zero, if the vertex is the root vertex in the tree. The first n
#' vertex ids (from 0) refer to the original vertices of the graph, the
#' other ids refer to vertex groups.}
#' \item{weights}{Numeric vector, counts the number of times a given tree
#' split occurred in the generated network samples, for each internal
#' vertices. The order is the same as in the `parents` vector.}
#' @family hierarchical random graph functions
#' @export
#' @cdocs igraph_hrg_consensus
consensus_tree <- hrg_consensus_impl
#' Create a hierarchical random graph from an igraph graph
#'
#' `hrg()` creates a HRG from an igraph graph. The igraph graph must be
#' a directed binary tree, with \eqn{n-1} internal and \eqn{n} leaf
#' vertices. The `prob` argument contains the HRG probability labels
#' for each vertex; these are ignored for leaf vertices.
#'
#' @param graph The igraph graph to create the HRG from.
#' @param prob A vector of probabilities, one for each vertex, in the order of
#' vertex ids.
#' @return `hrg()` returns an `igraphHRG` object.
#'
#' @family hierarchical random graph functions
#' @export
#' @cdocs igraph_hrg_create
hrg <- hrg_create_impl
#' Create an igraph graph from a hierarchical random graph model
#'
#' `hrg_tree()` creates the corresponsing igraph tree of a hierarchical
#' random graph model.
#'
#' @param hrg A hierarchical random graph model.
#' @return An igraph graph with a vertex attribute called `"probability"`.
#'
#' @family hierarchical random graph functions
#' @export
#' @cdocs igraph_from_hrg_dendrogram
hrg_tree <- function(hrg) {
out <- from_hrg_dendrogram_impl(hrg)
g <- out$graph
set_vertex_attr(g, "probability", value = out$prob)
}
#' Sample from a hierarchical random graph model
#'
#' `sample_hrg()` samples a graph from a given hierarchical random graph
#' model.
#'
#' @param hrg A hierarchical random graph model.
#' @return An igraph graph.
#'
#' @family hierarchical random graph functions
#' @export
#' @cdocs igraph_hrg_game
sample_hrg <- hrg_game_impl
#' Predict edges based on a hierarchical random graph model
#'
#' `predict_edges()` uses a hierarchical random graph model to predict
#' missing edges from a network. This is done by sampling hierarchical models
#' around the optimum model, proportionally to their likelihood. The MCMC
#' sampling is stated from `hrg()`, if it is given and the `start`
#' argument is set to `TRUE`. Otherwise a HRG is fitted to the graph
#' first.
#'
#' @param graph The graph to fit the model to. Edge directions are ignored in
#' directed graphs.
#' @param hrg A hierarchical random graph model, in the form of an
#' `igraphHRG` object. `predict_edges()` allow this to be
#' `NULL` as well, then a HRG is fitted to the graph first, from a
#' random starting point.
#' @param start Logical, whether to start the fitting/sampling from the
#' supplied `igraphHRG` object, or from a random starting point.
#' @param num.samples Number of samples to use for consensus generation or
#' missing edge prediction.
#' @param num.bins Number of bins for the edge probabilities. Give a higher
#' number for a more accurate prediction.
#' @return A list with entries:
#' \item{edges}{The predicted edges, in a two-column matrix of vertex
#' ids.}
#' \item{prob}{Probabilities of these edges, according to the fitted
#' model.}
#' \item{hrg}{The (supplied or fitted) hierarchical random graph model.}
#'
#' @references A. Clauset, C. Moore, and M.E.J. Newman. Hierarchical structure
#' and the prediction of missing links in networks. *Nature* 453, 98--101
#' (2008);
#'
#' A. Clauset, C. Moore, and M.E.J. Newman. Structural Inference of Hierarchies
#' in Networks. In E. M. Airoldi et al. (Eds.): ICML 2006 Ws, *Lecture
#' Notes in Computer Science* 4503, 1--13. Springer-Verlag, Berlin Heidelberg
#' (2007).
#' @examplesIf rlang::is_interactive()
#'
#' ## A graph with two dense groups
#' g <- sample_gnp(10, p = 1 / 2) + sample_gnp(10, p = 1 / 2)
#' hrg <- fit_hrg(g)
#' hrg
#'
#' ## The consensus tree for it
#' consensus_tree(g, hrg = hrg, start = TRUE)
#'
#' ## Prediction of missing edges
#' g2 <- make_full_graph(4) + (make_full_graph(4) - path(1, 2))
#' predict_edges(g2)
#' @export
#' @family hierarchical random graph functions
predict_edges <- function(graph, hrg = NULL, start = FALSE, num.samples = 10000,
num.bins = 25) {
# Argument checks
ensure_igraph(graph)
if (is.null(hrg)) {
hrg <- list(
left = c(), right = c(), prob = c(), edges = c(),
vertices = c()
)
}
hrg <- lapply(
hrg[c("left", "right", "prob", "edges", "vertices")],
as.numeric
)
start <- as.logical(start)
num.samples <- as.numeric(num.samples)
num.bins <- as.numeric(num.bins)
on.exit(.Call(R_igraph_finalizer))
# Function call
res <- .Call(
R_igraph_hrg_predict, graph, hrg, start, num.samples,
num.bins
)
res$edges <- matrix(res$edges, ncol = 2, byrow = TRUE)
class(res$hrg) <- "igraphHRG"
res
}
#' Conversion to igraph
#'
#' These functions convert various objects to igraph graphs.
#'
#' You can use `as.igraph()` to convert various objects to igraph graphs.
#' Right now the following objects are supported: \itemize{ \item codeigraphHRG
#' These objects are created by the [fit_hrg()] and
#' [consensus_tree()] functions. }
#'
#' @aliases as.igraph as.igraph.igraphHRG
#' @param x The object to convert.
#' @param \dots Additional arguments. None currently.
#' @return All these functions return an igraph graph.
#' @export
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}.
#' @keywords graphs
#' @examples
#'
#' g <- make_full_graph(5) + make_full_graph(5)
#' hrg <- fit_hrg(g)
#' as.igraph(hrg)
#'
as.igraph <- function(x, ...) {
UseMethod("as.igraph")
}
#' @method as.igraph igraphHRG
#' @export
as.igraph.igraphHRG <- function(x, ...) {
ovc <- length(x$left) + 1L
ivc <- ovc - 1L
ll <- ifelse(x$left < 0, -x$left + ovc, x$left + 1)
rr <- ifelse(x$right < 0, -x$right + ovc, x$right + 1)
edges <- c(rbind(seq_len(ivc) + ovc, ll), rbind(seq_len(ivc) + ovc, rr))
res <- make_graph(edges)
V(res)$name <- c(
if (!is.null(x$names)) x$names else as.character(1:ovc),
paste0("g", 1:ivc)
)
V(res)$prob <- c(rep(NA, ovc), x$prob)
res$name <- "Fitted HRG"
res
}
buildMerges <- function(object) {
## Build a merge matrix. This is done by a post-order
## traversal of the tree.
S <- numeric()
vcount <- length(object$left) + 1
nMerge <- vcount - 1
merges <- matrix(0, nrow = vcount - 1, ncol = 3)
mptr <- 1
S[length(S) + 1] <- -1
prev <- NULL
while (length(S) != 0) {
curr <- S[length(S)]
## coming from parent? going left if possible.
if (is.null(prev) ||
(prev < 0 && object$left[-prev] == curr) ||
(prev < 0 && object$right[-prev] == curr)) {
if (curr < 0) {
S <- c(S, object$left[-curr])
}
## coming from left child? going right
} else if (curr < 0 && object$left[-curr] == prev) {
S <- c(S, object$right[-curr])
## coming from right child? going up
} else {
if (curr < 0) {
merges[mptr, ] <- c(object$left[-curr], object$right[-curr], curr)
mptr <- mptr + 1
}
S <- S[-length(S)]
}
prev <- curr
}
merges
}
#' @method as.dendrogram igraphHRG
as.dendrogram.igraphHRG <- function(object, hang = 0.01, ...) {
nMerge <- length(object$left)
merges <- buildMerges(object)
.memberDend <- function(x) {
r <- attr(x, "x.member")
if (is.null(r)) {
r <- attr(x, "members")
if (is.null(r)) r <- 1:1
}
r
}
oHgt <- 1:nrow(merges)
hMax <- oHgt[length(oHgt)]
mynames <- if (is.null(object$names)) 1:(nMerge + 1) else object$names
z <- list()
for (k in 1:nMerge) {
x <- merges[k, 1:2]
if (any(neg <- x >= 0)) {
h0 <- if (hang < 0) 0 else max(0, oHgt[k] - hang * hMax)
}
if (all(neg)) { # two leaves
zk <- as.list(x + 1)
attr(zk, "members") <- 2L
attr(zk, "midpoint") <- 1 / 2 # mean( c(0,1) )
objlabels <- mynames[x + 1]
attr(zk[[1]], "label") <- objlabels[1]
attr(zk[[2]], "label") <- objlabels[2]
attr(zk[[1]], "members") <- attr(zk[[2]], "members") <- 1L
attr(zk[[1]], "height") <- attr(zk[[2]], "height") <- h0
attr(zk[[1]], "leaf") <- attr(zk[[2]], "leaf") <- TRUE
} else if (any(neg)) { # one leaf, one node
X <- paste0("g", -x)
isL <- x[1] >= 0
zk <- if (isL) list(x[1] + 1, z[[X[2]]]) else list(z[[X[1]]], x[2] + 1)
attr(zk, "members") <- attr(z[[X[1 + isL]]], "members") + 1L
attr(zk, "midpoint") <-
(.memberDend(zk[[1]]) + attr(z[[X[1 + isL]]], "midpoint")) / 2
attr(zk[[2 - isL]], "members") <- 1L
attr(zk[[2 - isL]], "height") <- h0
attr(zk[[2 - isL]], "label") <- mynames[x[2 - isL] + 1]
attr(zk[[2 - isL]], "leaf") <- TRUE
} else { # two nodes
X <- paste0("g", -x)
zk <- list(z[[X[1]]], z[[X[2]]])
attr(zk, "members") <- attr(z[[X[1]]], "members") +
attr(z[[X[2]]], "members")
attr(zk, "midpoint") <- (attr(z[[X[1]]], "members") +
attr(z[[X[1]]], "midpoint") +
attr(z[[X[2]]], "midpoint")) / 2
}
attr(zk, "height") <- oHgt[k]
z[[k <- paste0("g", -merges[k, 3])]] <- zk
}
z <- z[[k]]
class(z) <- "dendrogram"
z
}
#' @importFrom stats as.hclust
#' @export
#'
as.hclust.igraphHRG <- function(x, ...) {
merge3 <- buildMerges(x)
## We need to rewrite the merge matrix, because hclust assumes
## that group ids are assigned in the order of the merges
map <- order(-merge3[, 3])
merge <- merge3[, 1:2]
gs <- which(merge < 0)
merge[gs] <- map[-merge[gs]]
merge[-gs] <- -merge[-gs] - 1
## To get the ordering, we need to recode the merge matrix again,
## without using group ids. Here the right node is merged _into_
## the left node.
map2 <- numeric(nrow(merge))
mergeInto <- merge
for (i in 1:nrow(merge)) {
mr <- mergeInto[i, ]
mr[mr > 0] <- -map2[mr[mr > 0]]
mergeInto[i, ] <- -mr
map2[i] <- -mr[1]
}
n <- nrow(merge) + 1
order <- igraph_hcass2(
n = as.integer(n),
ia = as.integer(mergeInto[, 1]),
ib = as.integer(mergeInto[, 2])
)
mynames <- if (is.null(x$names)) 1:n else x$names
res <- list(
merge = merge, height = 1:nrow(merge), order = order,
labels = mynames, method = NA_character_,
dist.method = NA_character_
)
class(res) <- "hclust"
res
}
#' @importFrom stats reorder
as.phylo.igraphHRG <- function(x, ...) {
ovc <- length(x$left) + 1L
ivc <- ovc - 1L
ll <- ifelse(x$left < 0, -x$left + ovc, x$left + 1)
rr <- ifelse(x$right < 0, -x$right + ovc, x$right + 1)
edge <- matrix(rbind(seq_len(ivc) + ovc, ll, seq_len(ivc) + ovc, rr),
ncol = 2, byrow = TRUE
)
edge.length <- rep(0.5, nrow(edge))
labels <- if (is.null(x$names)) 1:ovc else x$names
obj <- list(
edge = edge, edge.length = edge.length / 2, tip.label = labels,
Nnode = ivc
)
class(obj) <- "phylo"
reorder(obj)
}
rlang::on_load(s3_register("ape::as.phylo", "igraphHRG"))
#' HRG dendrogram plot
#'
#' Plot a hierarchical random graph as a dendrogram.
#'
#' `plot_dendrogram()` supports three different plotting functions, selected via
#' the `mode` argument. By default the plotting function is taken from the
#' `dend.plot.type` igraph option, and it has for possible values:
#' \itemize{ \item `auto` Choose automatically between the plotting
#' functions. As `plot.phylo` is the most sophisticated, that is choosen,
#' whenever the `ape` package is available. Otherwise `plot.hclust`
#' is used. \item `phylo` Use `plot.phylo` from the `ape`
#' package. \item `hclust` Use `plot.hclust` from the `stats`
#' package. \item `dendrogram` Use `plot.dendrogram` from the
#' `stats` package. }
#'
#' The different plotting functions take different sets of arguments. When
#' using `plot.phylo` (`mode="phylo"`), we have the following syntax:
#' \preformatted{
#' plot_dendrogram(x, mode="phylo", colbar = rainbow(11, start=0.7,
#' end=0.1), edge.color = NULL, use.edge.length = FALSE, \dots)
#' } The extra arguments not documented above: \itemize{
#' \item `colbar` Color bar for the edges.
#' \item `edge.color` Edge colors. If `NULL`, then the
#' `colbar` argument is used.
#' \item `use.edge.length` Passed to `plot.phylo`.
#' \item `dots` Attitional arguments to pass to `plot.phylo`.
#' }
#'
#' The syntax for `plot.hclust` (`mode="hclust"`): \preformatted{
#' plot_dendrogram(x, mode="hclust", rect = 0, colbar = rainbow(rect),
#' hang = 0.01, ann = FALSE, main = "", sub = "", xlab = "",
#' ylab = "", \dots)
#' } The extra arguments not documented above: \itemize{
#' \item `rect` A numeric scalar, the number of groups to mark on
#' the dendrogram. The dendrogram is cut into exactly `rect`
#' groups and they are marked via the `rect.hclust` command. Set
#' this to zero if you don't want to mark any groups.
#' \item `colbar` The colors of the rectangles that mark the
#' vertex groups via the `rect` argument.
#' \item `hang` Where to put the leaf nodes, this corresponds to the
#' `hang` argument of `plot.hclust`.
#' \item `ann` Whether to annotate the plot, the `ann` argument
#' of `plot.hclust`.
#' \item `main` The main title of the plot, the `main` argument
#' of `plot.hclust`.
#' \item `sub` The sub-title of the plot, the `sub` argument of
#' `plot.hclust`.
#' \item `xlab` The label on the horizontal axis, passed to
#' `plot.hclust`.
#' \item `ylab` The label on the vertical axis, passed to
#' `plot.hclust`.
#' \item `dots` Attitional arguments to pass to `plot.hclust`.
#' }
#'
#' The syntax for `plot.dendrogram` (`mode="dendrogram"`):
#' \preformatted{
#' plot_dendrogram(x, \dots)
#' } The extra arguments are simply passed to [as.dendrogram()].
#'
#' @param x An `igraphHRG`, a hierarchical random graph, as returned by
#' the [fit_hrg()] function.
#' @param mode Which dendrogram plotting function to use. See details below.
#' @param \dots Additional arguments to supply to the dendrogram plotting
#' function.
#' @return Returns whatever the return value was from the plotting function,
#' `plot.phylo`, `plot.dendrogram` or `plot.hclust`.
#' @method plot_dendrogram igraphHRG
#' @export
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @keywords graphs
#' @examples
#'
#' g <- make_full_graph(5) + make_full_graph(5)
#' hrg <- fit_hrg(g)
#' plot_dendrogram(hrg)
#'
plot_dendrogram.igraphHRG <- function(x, mode = igraph_opt("dend.plot.type"), ...) {
if (mode == "auto") {
have_ape <- requireNamespace("ape", quietly = TRUE)
mode <- if (have_ape) "phylo" else "hclust"
}
if (mode == "hclust") {
hrgPlotHclust(x, ...)
} else if (mode == "dendrogram") {
hrgPlotDendrogram(x, ...)
} else if (mode == "phylo") {
hrgPlotPhylo(x, ...)
}
}
#' @importFrom graphics plot
#' @importFrom grDevices rainbow
#' @importFrom stats rect.hclust
hrgPlotHclust <- function(x, rect = 0, colbar = rainbow(rect), hang = .01,
ann = FALSE, main = "", sub = "", xlab = "", ylab = "",
...) {
hc <- as.hclust(x)
ret <- plot(hc,
hang = hang, ann = ann, main = main, sub = sub, xlab = xlab,
ylab = ylab, ...
)
if (rect > 0) {
rect.hclust(hc, k = rect, border = colbar)
}
invisible(ret)
}
#' @importFrom graphics plot
hrgPlotDendrogram <- function(x, ...) {
plot(as.dendrogram(x), ...)
}
#' @importFrom graphics plot
#' @importFrom grDevices rainbow
hrgPlotPhylo <- function(x, colbar = rainbow(11, start = .7, end = .1),
edge.color = NULL, use.edge.length = FALSE, ...) {
vc <- length(x$left) + 1
phy <- ape::as.phylo(x)
br <- seq(0, 1, length.out = length(colbar))
br[1] <- -1
cc <- as.integer(cut(x$prob[phy$edge[, 1] - vc], breaks = br))
if (is.null(edge.color)) {
edge.color <- colbar[cc]
}
plot(phy, edge.color = edge.color, use.edge.length = use.edge.length, ...)
}
#' Print a hierarchical random graph model to the screen
#'
#' `igraphHRG` objects can be printed to the screen in two forms: as
#' a tree or as a list, depending on the `type` argument of the
#' print function. By default the `auto` type is used, which selects
#' `tree` for small graphs and `simple` (=list) for bigger
#' ones. The `tree` format looks like
#' this: \preformatted{Hierarchical random graph, at level 3:
#' g1 p= 0
#' '- g15 p=0.33 1
#' '- g13 p=0.88 6 3 9 4 2 10 7 5 8
#' '- g8 p= 0.5
#' '- g16 p= 0.2 20 14 17 19 11 15 16 13
#' '- g5 p= 0 12 18 }
#' This is a graph with 20 vertices, and the
#' top three levels of the fitted hierarchical random graph are
#' printed. The root node of the HRG is always vertex group #1
#' (\sQuote{`g1`} in the the printout). Vertex pairs in the left
#' subtree of `g1` connect to vertices in the right subtree with
#' probability zero, according to the fitted model. `g1` has two
#' subgroups, `g15` and `g8`. `g15` has a subgroup of a
#' single vertex (vertex 1), and another larger subgroup that contains
#' vertices 6, 3, etc. on lower levels, etc.
#' The `plain` printing is simpler and faster to produce, but less
#' visual: \preformatted{Hierarchical random graph:
#' g1 p=0.0 -> g12 g10 g2 p=1.0 -> 7 10 g3 p=1.0 -> g18 14
#' g4 p=1.0 -> g17 15 g5 p=0.4 -> g15 17 g6 p=0.0 -> 1 4
#' g7 p=1.0 -> 11 16 g8 p=0.1 -> g9 3 g9 p=0.3 -> g11 g16
#' g10 p=0.2 -> g4 g5 g11 p=1.0 -> g6 5 g12 p=0.8 -> g8 8
#' g13 p=0.0 -> g14 9 g14 p=1.0 -> 2 6 g15 p=0.2 -> g19 18
#' g16 p=1.0 -> g13 g2 g17 p=0.5 -> g7 13 g18 p=1.0 -> 12 19
#' g19 p=0.7 -> g3 20}
#' It lists the two subgroups of each internal node, in
#' as many columns as the screen width allows.
#'
#' @param x `igraphHRG` object to print.
#' @param type How to print the dendrogram, see details below.
#' @param level The number of top levels to print from the dendrogram.
#' @param ... Additional arguments, not used currently.
#' @return The hierarchical random graph model itself, invisibly.
#'
#' @method print igraphHRG
#' @export
#' @family hierarchical random graph functions
print.igraphHRG <- function(x, type = c("auto", "tree", "plain"),
level = 3, ...) {
type <- igraph.match.arg(type)
if (type == "auto") {
type <- if (length(x$left <= 100)) "tree" else "plain"
}
if (type == "tree") {
return(print1.igraphHRG(x, level = level, ...))
} else {
return(print2.igraphHRG(x, ...))
}
}
print1.igraphHRG <- function(x, level = 3, ...) {
cat(sep = "", "Hierarchical random graph, at level ", level, ":\n")
## Depth of printed top of the dendrogram
.depth <- function(b, l) {
l[2] <- max(l[2], nchar(format(x$prob[b], digits = 2)))
if (l[1] == level) {
return(l)
}
if (x$left[b] < 0 && x$right[b] < 0) {
l1 <- .depth(-x$left[b], c(l[1] + 1, l[2]))
l2 <- .depth(-x$right[b], c(l[1] + 1, l[2]))
return(pmax(l1, l2))
}
if (x$left[b] < 0) {
return(.depth(-x$left[b], c(l[1] + 1, l[2])))
}
if (x$right[b] < 0) {
return(.depth(-x$right[b], c(l[1] + 1, l[2])))
}
return(l)
}
cs <- .depth(1, c(1, 0))
pw <- cs[2]
cs <- cs[1] * 3
vw <- nchar(as.character(length(x$left) + 1))
sp <- paste(collapse = "", rep(" ", cs + pw + 2 + 2))
nn <- if (is.null(x$names)) seq_len(length(x$left) + 1) else x$names
## Function to collect all individual vertex children
.children <- function(b) {
res <- c()
if (x$left[b] < 0) {
res <- c(res, .children(-x$left[b]))
} else {
res <- c(x$left[b] + 1, res)
}
if (x$right[b] < 0) {
res <- c(res, .children(-x$right[b]))
} else {
res <- c(x$right[b] + 1, res)
}
return(res)
}
## Recursive printing
.plot <- function(b, l, ind = "") {
if (b != 1) {
he <- format(paste(sep = "", ind, "'- g", b), width = cs)
ind <- paste(" ", ind)
} else {
he <- format(paste(sep = "", ind, "g", b), width = cs)
}
## whether to go left and/or right
gol <- x$left[b] < 0 && l < level
gor <- x$right[b] < 0 && l < level
## the children to print
ch1 <- character()
if (!gol && x$left[b] < 0) {
ch1 <- c(ch1, paste(sep = "", "g", -x$left[b]))
}
if (!gor && x$right[b] < 0) {
ch1 <- c(ch1, paste(sep = "", "g", -x$right[b]))
}
ch2 <- numeric()
if (!gol) {
if (x$left[b] < 0) {
ch2 <- c(ch2, .children(-x$left[b]))
}
if (x$left[b] >= 0) {
ch2 <- c(ch2, x$left[b] + 1)
}
}
if (!gor) {
if (x$right[b] < 0) {
ch2 <- c(ch2, .children(-x$right[b]))
}
if (x$right[b] >= 0) {
ch2 <- c(ch2, x$right[b] + 1)
}
}
## print this line
ch2 <- as.character(nn[ch2])
lf <- gsub(" ", "x", format(ch2, width = vw), fixed = TRUE)
lf <- paste(collapse = " ", lf)
lf <- strwrap(lf, width = getOption("width") - cs - pw - 3 - 2)
lf <- gsub("x", " ", lf, fixed = TRUE)
if (length(lf) > 1) {
lf <- c(lf[1], paste(sp, lf[-1]))
lf <- paste(collapse = "\n", lf)
}
op <- paste(
sep = "", format(he, width = cs),
" p=", format(x$prob[b], digits = 2, width = pw, justify = "left"),
" ", paste(collapse = " ", lf)
)
cat(op, fill = TRUE)
## recursive call
if (x$left[b] < 0 && l < level) .plot(-x$left[b], l + 1, ind)
if (x$right[b] < 0 && l < level) .plot(-x$right[b], l + 1, ind)
}
## Do it
if (length(x$left) > 0) .plot(b = 1, l = 1)
invisible(x)
}
print2.igraphHRG <- function(x, ...) {
cat("Hierarchical random graph:\n")
bw <- ceiling(log10(length(x$left) + 1)) + 1
p <- format(x$prob, digits = 1)
pw <- 4 + max(nchar(p))
nn <- if (is.null(x$names)) seq_len(length(x$left) + 1) else x$names
op <- sapply(seq_along(x$left), function(i) {
lc <- if (x$left[i] < 0) {
paste(sep = "", "g", -x$left[i])
} else {
nn[x$left[i] + 1]
}
rc <- if (x$right[i] < 0) {
paste(sep = "", "g", -x$right[i])
} else {
nn[x$right[i] + 1]
}
paste(
sep = "", format(paste(sep = "", "g", i), width = bw),
format(paste(sep = "", " p=", p[i]), width = pw),
"-> ", lc, " ", rc
)
})
op <- format(op, justify = "left")
cat(op, sep = " ", fill = TRUE)
invisible(x)
}
## TODO: print as a tree
#' Print a hierarchical random graph consensus tree to the screen
#'
#' Consensus dendrograms (`igraphHRGConsensus` objects) are printed
#' simply by listing the children of each internal node of the
#' dendrogram: \preformatted{HRG consensus tree:
#' g1 -> 11 12 13 14 15 16 17 18 19 20
#' g2 -> 1 2 3 4 5 6 7 8 9 10
#' g3 -> g1 g2}
#' The root of the dendrogram is `g3` (because it has no incoming
#' edges), and it has two subgroups, `g1` and `g2`.
#'
#' @param x `igraphHRGConsensus` object to print.
#' @param ... Ignored.
#' @return The input object, invisibly, to allow method chaining.
#'
#' @method print igraphHRGConsensus
#' @export
#' @family hierarchical random graph functions
print.igraphHRGConsensus <- function(x, ...) {
cat("HRG consensus tree:\n")
n <- length(x$parents) - length(x$weights)
mn <- if (is.null(x$names)) seq_len(n) else x$names
id <- c(mn, paste(sep = "", "g", seq_along(x$weights)))
ch <- tapply(id, x$parents, c)[-1] # first is zero
bw <- nchar(as.character(length(x$weights)))
vw <- max(nchar(id))
op <- sapply(seq_along(x$weights), function(i) {
mych <- format(ch[[i]], width = vw)
if (length(ch[[i]]) * (vw + 1) + bw + 4 > getOption("width")) {
mych <- gsub(" ", "x", mych, fixed = TRUE)
mych <- paste(collapse = " ", mych)
pref <- paste(collapse = "", rep(" ", bw + 5))
mych <- strwrap(mych,
width = getOption("width") - bw - 4,
initial = "", prefix = pref
)
mych <- gsub("x", " ", mych, fixed = TRUE)
mych <- paste(collapse = "\n", mych)
} else {
mych <- paste(collapse = " ", mych)
}
paste(sep = "", "g", format(i, width = bw), " -> ", mych)
})
if (max(nchar(op)) < (getOption("width") - 4) / 2) {
op <- format(op, justify = "left")
cat(op, sep = " ", fill = TRUE)
} else {
cat(op, sep = "\n")
}
invisible(x)
}
"
## How to print HRGs?
B-1 p=0
'- B-3 p=1 6
'- B-7 p=1 2
'- B-5 p=1 1 5
'- B-6 p=1 7
'- B-2 p=1 4
'- B-4 p=1 3 8
## The same at levels 1, 2 and 3:
B-1 p=0 B-3 B-6 6 2 1 5 7 4 3 8
B-1 p=0
'+ B-3 p=1 B-7 6 2 1 5
'+ B-6 p=1 B-2 7 4 3 8
B-1 p=0
'- B-3 p=1 6
'+ B-7 p=1 B-5 2 1 5